ログイン
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要論文
  2. 研究機関
  3. 情報科学研究所
  4. Information Science and Applied Mathematics
  5. Vol.27(2019)

Smoothness-constrained Model for Nonparametric Item Response Theory

https://doi.org/10.34360/00011106
https://doi.org/10.34360/00011106
fcbe0aeb-3fdc-4dea-b900-7a005bc73a82
名前 / ファイル ライセンス アクション
3093_0027_05.pdf 3093_0027_05.pdf (421.8 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2020-08-27
タイトル
タイトル Smoothness-constrained Model for Nonparametric Item Response Theory
言語
言語 eng
キーワード
主題 item response theory, nonparametric estimation, smoothness constraint, optimization, EM algorithm, latent class
資源タイプ
資源タイプ departmental bulletin paper
ID登録
ID登録 10.34360/00011106
ID登録タイプ JaLC
アクセス権
アクセス権 open access
作成者 Sato, Toshiki

× Sato, Toshiki

en Sato, Toshiki

Search repository
Takano, Yuichi

× Takano, Yuichi

en Takano, Yuichi

Search repository
内容記述
内容記述 This paper is concerned with the nonparametric item response theory (NIRT) for estimating item characteristic curves (ICCs) and latent abilities of examinees on educational and psychological tests. NIRT models can estimate various forms of ICCs under mild shape restrictions, such as the constraints of monotone homogeneity and double monotonicity. However, NIRT models frequently suffer from estimation instability because of the great flexibility of nonparametric ICCs. To improve the estimation accuracy, we propose a novel NIRT model constrained by monotone homogeneity and smoothness based on ordered latent classes. Our smoothness constraints avoid overfitting of nonparametric ICCs by keeping them close to logistic curves. We also implement a tailored expectation–maximization algorithm to calibrate our smoothness-constrained NIRT model efficiently. We conducted computational experiments to assess the effectiveness of our smoothness-constrained model in comparison with the common two-parameter logistic model and the monotone-homogeneity model. The computational results demonstrate that our model obtained more accurate estimation results than did the two-parameter logistic model when the latent abilities of examinees for some test items followed bimodal distributions. Moreover, our model outperformed the monotonehomogeneity model because of the effect of the smoothness constraints.
公開者
出版者 The Institute of Information Science Senshu University
ISSN
収録物識別子 1349-1938
書誌レコードID
収録物識別子 AB00033239
書誌情報 en : Information Science and Applied Mathematics

巻 27, p. 1-20, 発行日 2019
出版タイプ
出版タイプ VoR
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 12:09:39.268009
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3