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Abstract

This paper is concerned with the nonparametric item response theory (NIRT) for esti-
mating item characteristic curves (ICCs) and latent abilities of examinees on educational
and psychological tests. NIRT models can estimate various forms of ICCs under mild shape
restrictions, such as the constraints of monotone homogeneity and double monotonicity.
However, NIRT models frequently suffer from estimation instability because of the great
flexibility of nonparametric ICCs. To improve the estimation accuracy, we propose a novel
NIRT model constrained by monotone homogeneity and smoothness based on ordered latent
classes. Our smoothness constraints avoid overfitting of nonparametric ICCs by keeping them
close to logistic curves. We also implement a tailored expectation–maximization algorithm to
calibrate our smoothness-constrained NIRT model efficiently. We conducted computational
experiments to assess the effectiveness of our smoothness-constrained model in comparison
with the common two-parameter logistic model and the monotone-homogeneity model. The
computational results demonstrate that our model obtained more accurate estimation results
than did the two-parameter logistic model when the latent abilities of examinees for some
test items followed bimodal distributions. Moreover, our model outperformed the monotone-
homogeneity model because of the effect of the smoothness constraints.

Keywords: item response theory, nonparametric estimation, smoothness constraint, opti-
mization, EM algorithm, latent class

1 Introduction

Item response theory (IRT) is a family of statistical measurement methods for educational and

psychological tests. In IRT models, the characteristics of each test item are examined based

on the item characteristic curve (ICC), which expresses the probability of a correct answer as

a function of the latent abilities of the examinees. Indeed, many testing companies use IRT

models for the design, analysis, and scoring of tests.

This paper is focused on nonparametric item response theory (NIRT) models [9, 34, 36, 38].

In contrast to parametric item response theory (PIRT) models in which the ICCs are defined by

parametric functions (e.g., logistic curves or normal ogives), NIRT models are capable of esti-

mating various forms of ICCs under mild shape restrictions, such as the monotone-homogeneity

constraint [19, 20] and the double monotonicity constraint [20, 21]. It has been demonstrated
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that PIRT models do not always fit the data well [5, 8, 27], under which circumstances NIRT

models have a clear advantage. They are also useful for evaluating the data quality [18] and the

goodness of fit of PIRT models [5, 14, 15].

The existing methods for estimating nonparametric ICCs include regression splines [8, 26,

28, 30, 31], kernel smoothing [4, 7, 17, 27], isotonic regression [11], the finite mixture model [24],

and monotonic polynomial regression [6, 13]. If the latent abilities of the examinees are rep-

resented as ordered latent classes, NIRT models are categorized as ordered latent class mod-

els [2, 3, 16, 39, 40]. The expectation–maximization (EM) algorithm [2, 3, 31, 40] and Markov

chain Monte Carlo (MCMC) method [8, 10, 12, 16, 23, 39] have been employed to estimate

both the nonparametric ICCs and the latent abilities of examinees. However, NIRT models

frequently suffer from estimation instability because of the great flexibility of nonparametric

ICCs, especially if there is only a small amount of item-response data [22].

Various shape restrictions have been proposed to prevent overfitting with nonparametric

regression models [29, 35]. To improve the estimation accuracy of NIRT models, we make

effective use of the smoothness constraints on the nonparametric ICCs. More specifically, we

propose an NIRT model with monotone homogeneity and smoothness constraints based on the

ordered latent classes. Our smoothness constraints keep each nonparametric ICC close to a

logistic curve, and thus offer advantages to both PIRT and NIRT models, namely stability and

flexibility. To the best of our knowledge, no existing study has incorporated such smoothness

constraints into a monotone-homogeneity NIRT model. In addition, we implement a tailored

EM algorithm to calibrate our smoothness-constrained NIRT model efficiently.

We conducted computational experiments to assess the effectiveness of our smoothness-

constrained model in comparison with the common two-parameter logistic model and the monotone-

homogeneity model. The computational results demonstrate that our model delivered the best

estimation performance in many cases. In other words, the smoothness constraints were very

effective in enhancing the estimation accuracy of the NIRT models.

The remainder of this paper is organized as follows. In Sect. 2, we present the monotone-

homogeneity model for estimating the monotonically increasing ICCs and the ability classes of

examinees. In Sect. 3, we formulate our smoothness-constrained model and EM algorithm. In

Sect. 4, we report the computational results, and in Sect. 5 we conclude the paper with a brief

summary of our work.

2 Monotone-homogeneity model

In this section, we pose our monotone-homogeneity model by following Takano et al. [37]. Let

us denote by I a set of examinees and by J a set of dichotomously scored question items on a

test. The test results are given as the binary item-response data

U := (uij)(i,j)∈I×J ∈ {0, 1}|I|×|J |,
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where uij = 1 if the ith examinee provided a correct answer to the jth item, or uij = 0 otherwise.

We make the following assumptions throughout this paper.

Unidimensionality: the latent abilities of all examinees are evaluated unidimensionally;

Local Independence: item responses are conditionally independent of each other given an indi-

vidual latent ability.

Additionally, the latent abilities of examinees are represented as ordered latent classes denoted

by T .

The nonparametric ICCs of test items are defined by the decision variable

X := (xjt)(j,t)∈J×T ,

where xjt is the probability of the jth item being answered correctly by examinees in the tth

ability class. These nonparametric ICCs are usually estimated subject to monotone-homogeneity

constraints [19, 20], which require that the probability of a correct answer increases monotoni-

cally with ability class:

xjt ≤ xj,t+1 ((j, t) ∈ J × T ), (1)

0 ≤ xjt ≤ 1 ((j, t) ∈ J × T ). (2)

The ability classes of examinees are represented by the decision variable

Y := (yit)(i,t)∈I×T ,

where yit = 1 if the ith examinee possesses the latent ability of the tth class, or yit = 0 otherwise.

The following constraints guarantee that only one ability class is assigned to each examinee:

∑
t∈T

yit = 1 (i ∈ I), (3)

yit ∈ {0, 1} ((i, t) ∈ I × T ). (4)

Given xj· := (xjt)t∈T and yi· := (yit)t∈T , the probability of receiving response uij ∈ {0, 1} is

expressed as

Pr(uij | xj·,yi·) :=
∏
t∈T

(
(xjt)

uij (1− xjt)
1−uij

)yit .

From the assumption of local independence, the probability of the ith examinee giving the

response ui· := (uij)j∈J is expressed as

Pr(ui· | X,yi·) :=
∏
j∈J

Pr(uij | xj·,yi·).
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Because the responses of different examinees are independent, the probability of receiving item

response U from all the examinees is given by

Pr(U | X,Y ) :=
∏
i∈I

Pr(ui· | X,yi·)

=
∏

(i,j,t)∈I×J×T

(
(xjt)

uij (1− xjt)
1−uij

)yit .

By treating X and Y as decision variables, the log-likelihood function is defined as follows:

ℓ(X,Y | U) := log Pr(U | X,Y )

=
∑

(i,j,t)∈I×J×T

yit (uij log xjt + (1− uij) log(1− xjt)) . (5)

Consequently, the monotone-homogeneity model estimatesX and Y so that the log-likelihood

function (5) is maximized subject to constraints (1)–(4):

maximize
X,Y

∑
(i,j,t)∈I×J×T

yit (uij log xjt + (1− uij) log(1− xjt)) (6)

subject to xjt ≤ xj,t+1 ((j, t) ∈ J × T ), (7)

0 ≤ xjt ≤ 1 ((j, t) ∈ J × T ), (8)∑
t∈T

yit = 1 (i ∈ I), (9)

yit ∈ {0, 1} ((i, t) ∈ I × T ). (10)

3 Smoothness-constrained model

In this section, we firstly formulate our smoothness-constrained model and then describe an EM

algorithm for model estimation.

3.1 Smoothness constraints

To express our smoothness constraints, we use the logistic function

λ(w) :=
1

1 + exp(−w)
(11)

and the additional decision variable

W := (wjt)(j,t)∈J×T .

We then define the ICCs as xjt = λ(wjt); that is, λ(wjt) denotes the probability of the jth item

being answered correctly by examinees in the tth ability class. Because the logistic function
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increases monotonically from zero to one, the monotone-homogeneity constraints on λ(wjt) are

written as

wjt ≤ wj,t+1 ((j, t) ∈ J × T ). (12)

The smoothness constraints on the nonparametric ICCs are posed as follows:
∑
t∈T

|wj,t+2 − 2wj,t+1 + wjt| ≤ γ (j ∈ J), (13)

where γ ≥ 0 is a user-defined parameter. If γ is sufficiently large, constraints (13) are invalidated.

Conversely, if γ = 0, constraints (13) are equivalent to

wj,t+2 − wj,t+1 = wj,t+1 − wjt ((j, t) ∈ J × T ), (14)

which imply that for each j ∈ J , {wjt | t ∈ T} is a set of equally spaced points.

Figure 1 illustrates three examples of smoothness-constrained ICCs with γ = 0, where the

figures on the left-hand side are graphs of the logistic function, and those on the right-hand

side are the corresponding ICCs. It is clear that an S-shaped ICC can be created as shown in

Fig. 1(a). In addition, although wj1, wj2, . . . , wj5 must be equally spaced points, the difficulty

and discrimination of a test item can be adjusted. For instance, Fig. 1(b) and (c) correspond

to difficult and undiscriminating items, respectively. These examples demonstrate that the

smoothness constraints (13) keep each ICC close to a logistic curve with two parameters, namely

difficulty and discrimination. Therefore, our smoothness constraints provide benefits to both

PIRT and NIRT models in the sense that the shapes of nonparametric ICCs are restricted by

means of parametric functions.

3.2 Formulation

We begin by substituting xjt = λ(wjt) into the log-likelihood function (5) as follows:
∑

(i,j,t)∈I×J×T

yit (uij log λ(wjt) + (1− uij) log(1− λ(wjt))) . (15)

It then follows from Eq. (11) that

uij log λ(wjt) + (1− uij) log(1− λ(wjt))

=uij log λ(wjt) + (1− uij) log λ(−wjt)

= log λ((2uij − 1)wjt) (∵ uij ∈ {0, 1})

= − log(1 + exp((1− 2uij)wjt)). (16)

Therefore, maximizing the log-likelihood function (15) is equivalent to minimizing
∑

(i,j,t)∈I×J×T

yit log(1 + exp((1− 2uij)wjt)). (17)

We show next that the smoothness constraints (13) can be converted into a set of linear con-

straints.
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(a) (wj1, wj2, wj3, wj4, wj5) = (−4,−2, 0, 2, 4)

(b) (wj1, wj2, wj3, wj4, wj5) = (−4,−3,−2,−1, 0)

(c) (wj1, wj2, wj3, wj4, wj5) = (−1,−0.5, 0, 0.5, 1)

Figure 1: Smoothness-constrained ICCs with γ = 0

Proposition 3.1. The smoothness constraints (13) hold if and only if there exist S := (sjt)(j,t)∈J×T

and V := (vjt)(j,t)∈J×T such that

∑
t∈T

(sjt + vjt) ≤ γ (j ∈ J), (18)

sjt − vjt = wj,t+2 − 2wj,t+1 + wjt ((j, t) ∈ J × T ), (19)

sjt ≥ 0, vjt ≥ 0 ((j, t) ∈ J × T ). (20)
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Proof. Firstly, we suppose that the smoothness constraints (13) are satisfied by W̄ := (w̄jt)(j,t)∈J×T .

We then set S̄ := (s̄jt)(j,t)∈J×T and V̄ := (v̄jt)(j,t)∈J×T as
{
s̄jt := w̄j,t+2 − 2w̄j,t+1 + w̄jt, v̄jt := 0 if w̄j,t+2 − 2w̄j,t+1 + w̄jt ≥ 0,

s̄jt := 0, v̄jt := −(w̄j,t+2 − 2w̄j,t+1 + w̄jt) otherwise,

for each (j, t) ∈ J × T . It then follows that constraints (18)–(20) are satisfied by S̄, V̄ , and W̄

because
∑
t∈T

(s̄jt + v̄jt) =
∑
t∈T

|w̄j,t+2 − 2w̄j,t+1 + w̄jt| ≤ γ (j ∈ J).

Conversely, we suppose that constraints (18)–(20) are satisfied by S̄, V̄ , and W̄ . The

smoothness constraints (13) are then satisfied as follows:
∑
t∈T

|w̄j,t+2 − 2w̄j,t+1 + w̄jt| =
∑
t∈T

|s̄jt − v̄jt| ≤
∑
t∈T

(s̄jt + v̄jt) ≤ γ (j ∈ J).

Consequently, our smoothness-constrained model minimizes Eq. (17) subject to constraints (3)–

(4), (12), and (18)–(20):

minimize
S,V ,W ,Y

∑
(i,j,t)∈I×J×T

yit log(1 + exp((1− 2uij)wjt)) (21)

subject to wjt ≤ wj,t+1 ((j, t) ∈ J × T ), (22)∑
t∈T

(sjt + vjt) ≤ γ (j ∈ J), (23)

sjt − vjt = wj,t+2 − 2wj,t+1 + wjt ((j, t) ∈ J × T ), (24)

sjt ≥ 0, vjt ≥ 0 ((j, t) ∈ J × T ), (25)∑
t∈T

yit = 1 (i ∈ I), (26)

yit ∈ {0, 1} ((i, t) ∈ I × T ). (27)

3.3 EM algorithm

We employ an EM algorithm to find a good-quality solution to the smoothness-constrained

model (21)–(27) efficiently. To this end, we introduce the decision variable π := (πt)t∈T for the

sizes of ability classes, such that
∑
t∈T

πt = 1, πt > 0 (t ∈ T ). (28)

The conditional probability of receiving response ui· from the ith examinee, given that s/he

belongs to the tth ability class (i.e., yit = 1), is expressed as

f(ui· | w·t) :=
∏
j∈J

λ(wjt)
uij (1− λ(wjt))

1−uij .
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Accordingly, the marginal likelihood is calculated by a weighted sum of the form

∑
t∈T

πtf(ui· | w·t).

The posterior probability of the ith examinee belonging to the tth ability class is given by Bayes’

rule as follows:

πtf(ui· | w·t)∑
τ∈T πτf(ui· | w·τ )

. (29)

Moreover, the complete-data log-likelihood function based on Y is formulated as follows:

log


 ∏

(i,t)∈I×T

(πtf(ui· | w·t))
yit


 =

∑
(i,t)∈I×T

yit log πt

� �� �
(30a)

+
∑

(i,t)∈I×T

yit log f(ui· | w·t)

� �� �
(30b)

. (30)

Our EM algorithm starts with some initial estimate of the ability classes

Ȳ := (ȳit)(i,t)∈I×T .

To obtain Ȳ , one may use the number of test items that each examinee answered correctly. The

EM algorithm then repeats the E-step (expectation step) and M-step (maximization step) to

maximize the log-likelihood function (30).

The M-step substitutes Ȳ into the log-likelihood function (30) and then maximizes it. We

firstly consider maximizing Eq. (30a) subject to constraints (28). The method of Lagrange

multipliers yields π̄ := (π̄t)t∈T defined by

π̄t ←
∑

i∈I ȳit

|I|
(31)

for each t ∈ T .

Next, we focus on maximizing Eq. (30b) after substituting Eq. (16) into it. This is equivalent

to solving the smoothness-constrained model (21)–(27) with Y = Ȳ ; that is, for each j ∈ J we

solve

minimize
sj·,vj·,wj·

∑
(i,t)∈I×T

ȳit log(1 + exp((1− 2uij)wjt)) (32)

subject to wjt ≤ wj,t+1 (t ∈ T ), (33)∑
t∈T

(sjt + vjt) ≤ γ, (34)

sjt − vjt = wj,t+2 − 2wj,t+1 + wjt (t ∈ T ), (35)

sjt ≥ 0, vjt ≥ 0 (t ∈ T ). (36)
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This problem minimizes a convex function subject to linear constraints, so it can be solved

exactly and efficiently by standard nonlinear optimization software. The estimates obtained at

this step are denoted by

W̄ := (w̄jt)(j,t)∈J×T .

The E-step updates Ȳ with its expected value based on the current estimates W̄ and π̄.

This amounts to assigning the posterior probability (29) as follows:

ȳit ←
π̄tf(ui· | w̄·t)∑

τ∈T π̄τf(ui· | w̄·τ )
(37)

for all (i, t) ∈ I×T . The E-step and M-step are repeated until a termination condition is satisfied.

Our EM algorithm for solving the smoothness-constrained model (21)–(27) is summarized as

follows:

Step 0 (Initialization) Set Ȳ as an initial estimate, and go to Step 2.

Step 1 (E-Step) Update Ȳ according to Eq. (37) for (i, t) ∈ I × T .

Step 2 (M-Step) Update π̄ according to Eq. (31) for t ∈ T . Update W̄ by solving problem (32)–

(36) for j ∈ J .

Step 3 (Termination Condition) Terminate the algorithm if a termination condition is satisfied.

Otherwise, return to Step 1.

4 Computational experiments

The computational results reported in this section evaluate the effectiveness of our smoothness-

constrained NIRT model.

4.1 Experimental design

We evaluated the estimation accuracy of IRT models through the simulation process illustrated

in Fig. 2.

In Step 1, we randomly generate θi for i ∈ I from a standard normal distribution. Next, we

give a true ability class t∗i for i ∈ I on the basis of θi and Table 1. For instance, if −1.29 ≤ θi <

−0.81, we set t∗i := 2. The ranges of θ in Table 1 were determined so that each ability class is

assigned to approximately the same number of examinees.

We used two types of function to create the true ICCs of test items. One was the two-

parameter logistic (2PL) model

p2PLj (θ) :=
1

1 + exp(−1.7aj(θ − bj))
, (38)
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. . .

. . .

Figure 2: Simulation process of model evaluation

Table 1: Relationship between ability class t ∈ T and normal random number θ

t range of θ median of θ

1 (−∞,−1.29) −1.73

2 [−1.29,−0.81) −1.02

3 [−0.81,−0.49) −0.64

4 [−0.49,−0.23) −0.36

5 [−0.23, 0) −0.12

6 [0, 0.23) 0.12

7 [0.23, 0.49) 0.36

8 [0.49, 0.81) 0.64

9 [0.81, 1.29) 1.02

10 [1.29,∞) 1.73
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where aj and bj are parameters of discrimination and difficulty, respectively. These parameters

were drawn from uniform distributions for which aj ∈ [0.5, 2.0] and bj ∈ [−1.5, 1.5]. Similarly to

Nozawa [25], the other type of function was the extended three-parameter normal ogive (3PN)

model of order two:

p3PNj (θ) := Φ(aj2(θ − bj)
3 +

√
3aj1aj2(θ − bj)

2 + aj1(θ − bj)), (39)

where Φ is the normal ogive, aj1 and aj2 are shape parameters, and bj is a difficulty pa-

rameter. These parameters were drawn from uniform distributions for which aj1 ∈ [0.4, 0.8],

aj2 ∈ [0.1, 0.5], and bj ∈ [−0.5, 0.5]. The 3PN model is based on the assumption that examinees’

abilities follow a bimodal distribution. Accordingly, the standard two-parameter logistic IRT

models have difficulty in fitting ICCs defined by the 3PN model, whereas they can accurately

fit ICCs defined by the 2PL model.

When the true ICC of the jth item was defined by the 2PL model (38), it was set as

x∗j1 := p2PLj (−1.73), x∗j2 := p2PLj (−1.02), . . . , x∗j,10 := p2PLj (1.73) according to the median of θ

in each range (see Table 1). The true ICCs defined by the 3PN model (39) were set in the

same manner. The percentage of ICCs defined by the 3PN model is denoted by ρ, where

ρ ∈ {0%, 20%, 50%} similarly to Nozawa [25]. For instance, if |J | = 60 and ρ = 20%, true ICCs

of 12 items are created by the 3PN model.

In Step 2, binary item-response data U are generated randomly based on the true ability

classes and ICCs specified at Step 1. Specifically, examinees in the tth ability class correctly

answered the jth item with probability x∗jt.

In Step 3, ability classes and ICCs are estimated from the item-response data U by using

the following IRT models:

2PLM: two-parameter logistic model,

MHM: monotone-homogeneity model (6)–(10),

SCM(γ): smoothness-constrained model (21)–(27) with γ ∈ {0, 1, 2, 4}.

We used the irtoys package in R 3.1.2 (http://www.R-project.org) to perform the 2PLM

computations. Here, the continuous-valued ability θ estimated by 2PLM was converted into

an ability class t according to Table 1 for comparison purposes. To solve MHM and SCM,

we implemented the EM algorithm by using MATLAB R2015a (https://www.mathworks.com/

products/matlab.html), in which problem (32)–(36) was solved by the fmincon function in

the MATLAB optimization toolbox. The initial estimate Ȳ was set by dividing examinees

equally into 10 ability classes according to the number of correct answers. Every time Ȳ was

updated in the EM algorithm, the ability classes of examinees were determined temporarily as

t̂i := argmax{ȳit | t ∈ T} for i ∈ I. The algorithm was terminated if t̂i remained the same as

the previous one for all i ∈ I.
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Table 2: Root-mean-square error of item-characteristic curve estimation

|I| |J | ρ 2PLM MHM SCM(0) SCM(1) SCM(2) SCM(4)

1000 30 0% 0.031 0.057 0.054 0.036 0.038 0.046

20% 0.049 0.057 0.073 0.042 0.040 0.046

50% 0.075 0.058 0.102 0.052 0.044 0.048

60 0% 0.030 0.049 0.066 0.037 0.034 0.041

20% 0.053 0.047 0.078 0.043 0.036 0.040

50% 0.082 0.050 0.115 0.059 0.044 0.044

3000 30 0% 0.017 0.041 0.056 0.025 0.026 0.034

20% 0.046 0.041 0.069 0.032 0.028 0.034

50% 0.073 0.041 0.102 0.044 0.033 0.034

60 0% 0.031 0.034 0.064 0.027 0.023 0.028

20% 0.056 0.034 0.080 0.038 0.027 0.030

50% 0.083 0.034 0.116 0.058 0.033 0.029

In Step 4, we evaluate the estimation accuracy of the IRT models by comparing the true

data (Step 1) with the estimates (Step 3). Specifically, the root-mean-square error (RMSE) of

the ability classes is calculated as
√∑

i∈I(t
∗
i − t̂i)2

|I|
,

where t̂i is the estimated ability class. The RMSE of the ICCs is calculated as
√∑

(j,t)∈J×T (x
∗
jt − x̂jt)2

|J ||T |
,

where x̂jt is the estimated probability of a correct answer. We repeated these steps 10 times

and show the average RMSEs in the following section.

4.2 Computational results

Tables 2 and 3 give the RMSEs of the ability classes and ICCs for the 12 experimental conditions.

Here, the number of examinees was |I| ∈ {1000, 3000}, and the number of test items was

|J | ∈ {30, 60}. Because the ordinal scale of neural test theory grades examinees into roughly 10

classes [32, 33], the number of ability classes was |T | = 10. Note that the minimum RMSEs for

each experimental condition are given in bold face in the tables.

We firstly focus on the accuracy of ICC estimation (Table 2). It is reasonable that 2PLM

estimated ICCs very accurately when the percentage of 3PN ICCs was ρ = 0%. However, the
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Table 3: Root-mean-square error of ability-class estimation

|I| |J | ρ 2PLM MHM SCM(0) SCM(1) SCM(2) SCM(4)

1000 30 0% 0.814 0.884 0.814 0.785 0.801 0.845

20% 0.838 0.886 0.890 0.799 0.816 0.849

50% 0.956 0.959 1.137 0.883 0.890 0.922

60 0% 0.629 0.680 0.747 0.611 0.606 0.642

20% 0.704 0.680 0.812 0.642 0.624 0.648

50% 0.914 0.715 1.176 0.740 0.676 0.700

3000 30 0% 0.808 0.877 0.841 0.787 0.803 0.850

20% 0.831 0.872 0.881 0.792 0.801 0.841

50% 0.982 0.929 1.150 0.871 0.869 0.905

60 0% 0.642 0.629 0.739 0.585 0.576 0.603

20% 0.747 0.642 0.828 0.638 0.599 0.621

50% 0.997 0.694 1.190 0.761 0.666 0.675

estimation accuracy of 2PLM was greatly reduced by increasing the percentage of 3PN ICCs.

Indeed, when ρ ≥ 20%, the RMSEs were often smaller for MHM than for 2PLM. We also

note that the estimation accuracy of MHM increased with the amount of item-response data.

For instance, the RMSEs of MHM for (|I|, |J |) = (1000, 30) were at least 0.057, and those for

(|I|, |J |) = (3000, 60) were 0.034.

The largest RMSEs of the ICCs were those for SCM(0) in almost all cases because the shapes

of the ICCs were tightly restricted by the smoothness constraints with γ = 0. In contrast,

SCM(1) frequently obtained higher estimation accuracy than did MHM, especially for ρ ≤ 20%.

The smallest RMSEs were attained by SCM(2) in many cases, whereas only for (|J |, ρ) =

(60, 50%) were those provided by SCM(4).

We next move on to the accuracy of ability-class estimation (Table 3). As in Table 2, the

estimation accuracy of 2PLM reduced markedly with the percentage of 3PN ICCs. In contrast,

MHM made relatively accurate estimates when (|J |, ρ) = (60, 50%). Very large RMSEs were

still provided by SCM(0) as in Table 2. Meanwhile, the smallest RMSEs were often obtained by

SCM(1) with |J | = 30, and those were obtained by SCM(2) with |J | = 60.

The results in Tables 2 and 3 confirm that smoothness constraints are very effective in

improving the estimation accuracy of NIRT models. In particular, we may say that SCM(2)

delivers the best estimation performance on the whole.

Table 4 gives the computation times (in seconds) required for estimating the IRT models. The

computations of 2PLM were very rapid mainly because each ICC involved only two parameters.

The computations of SCM(γ) became slower as γ or ρ increased. The computation time for
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Table 4: Computation times (s)

|I| |J | ρ 2PLM MHM SCM(0) SCM(1) SCM(2) SCM(4)

1000 30 0% 3.3 172.2 42.6 43.3 75.6 140.2

20% 3.2 173.0 56.7 62.5 83.7 129.4

50% 3.1 200.8 77.0 106.3 115.6 158.2

60 0% 8.2 383.1 81.8 113.2 118.6 186.5

20% 8.2 317.4 144.0 166.7 149.0 214.9

50% 8.4 409.6 224.6 265.2 220.0 259.9

3000 30 0% 13.8 1140.0 88.3 128.3 310.2 597.9

20% 14.2 1026.5 171.4 269.5 326.5 542.3

50% 13.7 1273.7 181.6 281.2 323.0 672.6

60 0% 36.7 1743.7 214.0 355.2 364.8 830.3

20% 36.0 1949.8 443.8 765.2 555.2 825.2

50% 35.8 3053.2 487.5 1008.0 898.0 1034.0

estimating MHM was always the longest among all the models. These results suggest that when

many 3PN ICCs are estimated subject to loose smoothness constraints, our EM algorithm takes

a relatively long time to terminate.

Figures 3 and 4 show illustrative examples of estimated ICCs together with the true ICCs.

We firstly focus on Fig. 3, where (|I|, |J |, ρ) = (3000, 60, 0%), and the true ICCs were defined by

the 2PL model. As expected, 2PLM fitted the true ICCs well. The MHM also fitted the true

ICCs well, but it is noteworthy that the ICCs estimated by MHM moved around the true ICCs:

for example, for the ability classes t = 7, 8, and 9 in Fig. 3(b) and t = 3, 4, and 6 in Fig. 3(c).

The SCM(0) deviated partly from the true ICCs: for example, for the ability classes t = 3, 4, 7,

and 8 in Fig. 3(a). In contrast, the true ICCs and those estimated by SCM(2) were almost the

same because the nonparametric ICCs were made moderately less flexible by the smoothness

constraints with γ = 2.

We next move on to Fig. 4, where (|I|, |J |, ρ) = (3000, 60, 50%) and the true ICCs were

defined by the 3PN model. It is clear that neither 2PLM nor SCM(0) fitted the true ICC

because these models create only logistic curves. In contrast, MHM and SCM(2) estimated the

shapes of the true ICCs accurately, except that SCM(2) underestimated the probability of a

correct answer for the ability class t = 2 in Fig. 4(a).
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(a) test item j = 7

(b) test item j = 9

(c) test item j = 27

Figure 3: Estimated ICCs and true 2PL ICCs ((|I|, |J |, ρ) = (3000, 60, 0%))
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(a) test item j = 33

(b) test item j = 36

(c) test item j = 59

Figure 4: Estimated ICCs and true 3PN ICCs ((|I|, |J |, ρ) = (3000, 60, 50%))
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5 Conclusion

We devised an NIRT model with monotone homogeneity and smoothness constraints based on

ordered latent classes. Our smoothness constraints avoid overfitting of nonparametric ICCs

by smoothing them based on logistic curves. We also developed an EM algorithm for our

smoothness-constrained NIRT model to estimate the nonparametric ICCs and the latent abilities

of examinees efficiently.

The computational results demonstrated the effectiveness of our model in comparison to

the two-parameter logistic model and the monotone-homogeneity model. Indeed, our model

obtained more accurate estimation results than did the two-parameter logistic model when the

latent abilities of examinees for some test items followed bimodal distributions. Moreover, our

model outperformed the monotone-homogeneity model because of the effect of the smoothness

constraints.

The contributions of this research are twofold. Firstly, we formulated the smoothness-

constrained NIRT model as a mathematical optimization problem. Although we implemented

the EM algorithm for the purpose of efficient computation, high-performance mixed-integer opti-

mization algorithms could be used to compute an optimal solution to the problem [1]. Secondly,

we validated the utility of shape restrictions on nonparametric ICCs in avoiding an unstable

ICC estimation specific to NIRT models. A future direction of study will be to impose other

shape restrictions on nonparametric ICCs and evaluate their effectiveness.

Although PIRT models are used commonly by many testing companies, it is known that

they do not always fit the actual item-response data well. In contrast, NIRT models have the

potential to estimate various forms of ICCs, and the estimation performance could be improved

by incorporating the smoothness constraints. So, we expect that our research will extend the

usefulness of NIRT models.
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