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Abstract

This paper provides discussions about a misspecified MA(2) model fitting to (a data generated by) a Gaussian
MA(g) process. They are mainly concerned a problem for finding a number of locally maximal points of the Gaussian
quasi-maximum likelihood function of the model when the sample size is large. When 0 < ¢ <3, the MA(2) model has
always only one parameter set estimated in the invertible parameter space. On the other hand when g = 5, the likeli-
hood function of the MA(2) model has more than one locally maximal points in the invertible parameter space if the
model is fitted to a data from some MA(g) process.
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1. Introduction.

It is well known that when we fit an MA(1) model to some special time series data which does not follow MA(1)
process, the MA(1) parameter does not always have an unique Gaussian quasi-maximum likelihood estimator in the
invertible space. Tanaka and Huzii [11] have given the conditions of AR(2) parameters on which the MA(1) quasi-
likelihood function has more than one locally maximal points in the invertible parameter space (-/, /). Tanaka and
Aoki [10] also showed the domain for the AR(2) parameters on which the MA(1) conditional-likelihood function has
more than one locally maximal points in the AR(2) parameter space shown in Figure 1 below. From Tanaka and Huzii
[11], we have two locally maximal points of the MA(1) conditional-likelihood function F(x;a,b)=F(x), say, where x is
an MA(1) parameter and a, b are AR(2) parameters. In order to have the conditions on which the function has two
locally maximal points in the AR-parameter space, we should consider the differentiation DF(x) = 0, and we specified
the case where the solution of the equation DF(x) = 0 changed from three to two. That is, the value of the resultant
(see [8], [9]) was able to formalize the contour line for zero (the bifurcation set). We set the domain with a deep color
surrounded with the curve of the shape of a wedge given in the upper part of Figure 1. Its boundary is the bifurcation
set. It will be seen that the function F(x;a,b) is locally a cusp (see [4], [7], [10]).
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Figure 1. The domain for AR(2)-parameters.
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In this paper, we shall consider an MA(2) model fitting to the data from MA(g) processes. To know answers of
problems some simulation studies and some numerical integrations are performed by using Mathematica software
(Ver.11.3).

From our findings, we shall conjecture that there are more than one locally maximal points of the conditional
likelihood function in the invertible parameter space, it an MA(2) model is fitted to some series belongs to an MA(q)
process for the order g=5.

2. Notations for an MA(2) model fitting.

Let {Z(1)} be a weakly stationary process with EZ(t) = 0. {Z(1)} is said to satisfy a moving average model of order ¢
(MA(g) model) if {Z(z)} is expressed as

Z(1)=(1+B) B+...+ B, B e(t), Q.1

where {e(t)}, ¢ being an integer, consists of independently and identically distributed random variables with Efe(t)] =
0, Ele(ty’] = o2, the B,'s are constants which are independent of 7, and B is the usual back-shift operator such that

Ble(t)] = e(t-1) and B*[e(1)] = B[Bk‘l[e(t)]] for k =1,2,.. (see, for example [1], [2], [3]).
A function 6(B) is given by

9(3):1+BIB+...+3qu:ﬁ (1-6,B). (2.2)
k=1

In our model fitting, it is assumed that | 4| < I for all k = 1, 2,- -, g. Let @= (B, .., B,) be a g-dimensional unknown

parameter, and let { F;(®)} be a sequence of functions of @, which are defined in the following way. For 7 > 0,

q
e(t) = kn (1 -6 B Z(v) = {532, Fu(©) B} Z(0). (2.3)
=1

For evaluating the asymptotic properties of the conditional quasi-maximum likelihood estimators of @ when the
sample size tends to infinity, we should attend to a function

$,0) = E[e(n)?] (24

_p 1
- —1/2‘mzl[l—Qjexp(—2niw)]\z fZ(w)dw.

The value @ which minimizes S,(®) with respect to @ should be obtained for the conditional quasi-maximum likeli-
hood estimators of @ (see Tanaka and Huzii [11], Huzii [5], Kabaila [6] ).
The spectrum of an MA(g) process fz(w) is given by

o) = |o(ei)f. 2.5)

If the process {Z(t)} is an MA(q) process and it is correctly fitted by the MA(g) model, then we have S,(®) = %
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which is a spectral density of a white noise process.

Now let {X(7)} be a weakly stationary process with mean E[X(7)] = O and spectral density fx(w). For an MA(gq)
model fitting to this process {X(7)}, $,(©) is expressed as

_ o2 Jx (W)
Sq(®) - 2 |]‘[j=l[l—9, exp(~2 miw)|? do. (2.6)

In this paper, our consideration is given to the case when an MA(2) model is fitted incorrectly to an MA(g) process
{X(1)}; X(1) = (1 +by B+ ...+ b, BI) e(t).

Then we set the MA(2) model parameters (x, y) in stead of (8;, 82), and define a function

52,4(®) = $>2(0).
For g = 2, 5,,(0®) can be derived from (2.6), ignoring the constant term %, as

So0(x, ¥) = Soo(x, ¥; by, bo)

1ey+ (1+y) bi+2 (x2-y (1+y)) ba+ (1+y) b3-2x by (1+by)

= (1Y) (X xry) (Lixry) : @D
The invertible parameter space ), of the MA(2) model is given by
W={(x,y):1-y2>0, (x-xy) (-x+xy) +(1-y?)? >0}. (2.8)

If we fit the MA(2) model to a special MA(5) process, the function S5 5(x, y) will have two locally minimal points in

an invertible space Q, of the MA(2) model. For an example, we have the following graph for an MA(5) process with
(by, ..., bs) = (0.1, 0, -0.85, 0, 0.1). Figure 2b shows that the function S, s(x, y) has two locally minimal points in the
invertible space (), (the gray triangle domain in Figure 2a, 2b).
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Figure 2a. Cross sections of S 5(x, y) with (by, .., b5s) = (0.1, 0, -0.85, 0, 0.1).
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Figure 2b. Cross sections of S, 5(x, y) with (b, ..., bs) = (0.1, 0, -0.85, 0, 0.1).

In order to investigate the minimal point of the function S5 4(x, y), it is first necessary to consider its locally minimal

points on the parameter space (. The locally minimal and maximal points satisfy the following equations,

0 SZ,q(xy »

—_— =0, 2.9)
Oy

0 SZ,q(X, »

[EENGAEaa— (2.10)
dy

In the next Section 3, we consider to solve these equations on x and y for each MA(g) process.

3. MA(2) model fittings to MA(q) processes.
3.1. MA(2) model fitting to the MA(0) process (white noise process).
In this case the estimated MA(2)-parameters are (0, 0). For the function S, o(x, y) is given by

i} 1y
S2,0(X, Y) = (“1+y) (1-x+y) (Lexty) CRY

and from (2.9) and (2.10) the locally minimal points of S»(x, y) in €, satisfy

x (1+y) =0,

-x2+y (1+y)2=0. (3.2)

Hence it is seen that x = O and y = 0.



Misspecified MA(2) Model Fitting to a Data from Gaussian MA(g) Process

i,
= .
L e e
s R
w
x5
S

I'ul\\\ M > \.\
'\ gl \\
\ 4 <

=
S

120
;1.15
110

105
1.00
10

Figure 3.1. Cross section of S o(x, y) on ;.

3.2. MA(2) model fitting to the MA(1) process.

The estimated MA(2) model has the MA-parameters (by, 0).

For the function S, ;(x, y) is given by

~1-y+2 x by -b2-y b? (3.3)

52,1(%, Y) = (“1vy) (1-x+y) (Lexty)

and from (2.9) and (2.10) the locally minimal points of S, ;(x, ¥) in Q, should satisfy the equations

(-1 -y +xb;g) (x -bs -yb;)=0,

(34
X2 vy +2y? +y> +xby +X°b; -2xyb; -

3xy?b; -x?b? +yb? +2y?b? +y>b? = 0.
Hence we can get x = b; and y = 0 by using the Mathematica (see Appendix 1).
3.3. MA(2) model fitting to the MA(2) process.
The estimated MA(2) model has the MA-parameters (by, b;).
The function S,,(x, y) is given by

Sp2(X y) = ———— (3.5)

(=1+y) (1-x+y) (1+x+y)

(-1-y+2xbs-b] -yb] -2x" b, +
2yby; +2y?by +2x by by -b3 —yb32).
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From (2.9) and (2.10) the locally minimal points of S, ,(x, y) in Q, should satisfy the equations

X -XYy-X(1+y)b?-2x(1+y)by-x(1+y)b3
thy (1+x%+2y+y? + (x> +(1+y)?) by) = 0,

(3.6)
X2y +2y?+y? 4+ (X2 1y (1+y)?) b - (x* -2X7y (2+Y)

+(1+y)? (1 +y2)> b, + (—Xz +y (1 +y)2) b2

by (x (1+x?-2y-3y%) -x(1+x*-2y-3y?) b,) = 0.
Hence we can get x = by and y = b, in Q, (see Appendix 2).
3.4. MA(2) model fitting to the invertible MA(3)( bs, b,, b3) process with bz #0.
The estimated MA(2) model has the MA-parameters ( % , %)

-1+b3 -1+b3
For the function S, 3(x, y) is given by
Sa3(% y) = ———1——— (3.7

(-1+y) (I-x+y) (1+x+y)

(-1-y+2xb;-b] -ybi -2x7by +2yby +2y’ by +
2xbyby -b2 -yb2 +2x>bs -4xybs -2xy?b; -
2x?bybs +2ybybs +2y* by by +2xby by -bZ -y bZ).

From (2.9) and (2.10) the locally minimal points of S 3(x, y) in Q, should satisfy the equations

X -XYy-x(1+y)b? -x(1+y)b?+3x?b;-x*bs-2ybs;+4x?ybs-
5y2b3 +2x%y?bs -4y> b3 -y* b3 -xbZ -xyb? +
b, (1 wx2 42y +y? 4 <X2+ (1 +y)2) b, -2x (1+y) bg) +
b, (—ZX (1+y) + (X2 + (1 +y)2) b3) =0,
(3.8)
X2y 22y s (X2 Yy (14y)?) b+ (X2 4y (1+y)?) b3+
2xb; -x>b; +x°b; +2xyb; -4x>yb; +3xy?b; -
2x3y?bs +4xy>bs +xy*bs -x?bZ +yb? +
2y2b3 +y? b3 -by (X" -2X7y (2+y) + (1+y)? (1+y7) -
X (1+x% -2y -3y?) bs) +by (-x (1+x*-2y-3y?) -
X (1+x7-2y-3y?) b+ (x*-2X7y (2+y) +
(1 +y)2<1 +y2))b3) = 0.

To solve these equations for x and y in ), is very difficult for us, we then use the Mathematica software.

We first consider a special case when MA(3) model has parameters (0, 6, bs) for -1<b3< 0, 0 < b3 < I.

From (3.8) we have the equations on x, y of MA(2) model parameters such that
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f=x(1+y) - (x*+y (1+y)? (2+y) -
x? (3+4y+2y?)) bs-x (1+y) b} =0,
(3.9)
g=-X2+y+2y° 1y’ +x (2+x* 2y +3y? +
4y +y* - x? (1+4y+2y2))b3+(—x2+y(1+y)2)b§ -0

The invertibility condition for the MA(3)(0, 0, bs) process is 1 - b 52 > 0, and we can derive the solution (0, 0) in £,
(See Appendix 3.1).

When MA(3)( by, by, bs) process with bz # 0, to solve the equations we first consider the polynomials of f and g,
where f'is the left hand side of the first equation of (3.9) and g is that of the second equation of (3.9). In order to get the
common roots of fand g on x and y we use the resultant of the two polynomials f and g for each variables x and y. The
resultant of fand g on y is given as

Ry = Resultant[f, g, x] // Factor

Ry = —(1+y)*b3 (-1 +b; b, +b3)* (1 +b; +b; +b3)* (3.10)
(—,V+b2-b1b3 +yb§)x(—yb12b§+b§+2yb§+y2b§+y2bfb§—
ybi-2y?bs -y>b} +4ybibs -4b;bybs 10y by b, bs -
4y?bybybs ~4y?b3bybs +b; b2bs +2yb; bl bs +
11y?b; b3 b3 +4y> by b3 by -y? b3 b2 b3 +4 y? by b3 bs +
8b2 +12yb? +6y?bI +y>bZ —4b? b3 +6yb? b2 -
2y°b2b2 sy bib2 +2y?bi b2 +y> b b2 +4b, b2 -
12yb, b2 -15y? by b2 -4y b, b2 ~bZ b, b7 -
2ybib,bZ ~11y? b2 b, b2 -4y bZb,b? +
4b2b2 -6ybZbZ +2y>bZb? +yb?blbl -
4yb3b2 -4b; b3 +12yb; b3 +15y% by b3 +
4y3by b3 -b3b3 -2yb3b3 -y?bib3 +
4b; by b3 +10y by by b3 +4y? by b, b3 -
8b3 -12y b3 -6y b5 - y* b3)

Also the resultant of fand g on x is given as

Rx = Resultant[f, g, y] // Factor

Rx =x* (-1 +by by +b3)? (1 +by +by +b3)* (-X +b;y ~by b3 +X b3) x (3.11)
(b1 b3 -x b3 b3 -xb3 +2b1 b3 +2x° by b3 -
xb?b3 -2xbj -x>bj +by b +x? by by —x b5 ~bs +x by bz -
2b2b; +2xb3bs -bibs +xb3bs-3b,bs -x?>byb; +6xby by bs -
2b2bybs -6 x> bZby b ~bf by by —x? b b, bs -2b2bs -2x? b3 bs +
5xbybZbs +4x3 by b2 by +x b3 b2 bs +b3 by +b3bs -3xb? +x> b2 -
2b; b2 +8x2by b2 +4x b2 b2 -2x° b2 b2 —b3 b2 +2xbf b2 +x> b b2 -
5xbyb? -4x>b,b2 -5xb?b, b2 -4x>bZb, b2 -2b3 b, b2 -
2x2b3 b, b2 4 xb2b2 +2x3b2b2 +2b; b2 b2 +6x% by b2 b2 +
xb2b2b2 -2xb3 b2 +5xby b3 +4x> by b3 +2b2 b3 +
2x2b2b3 +xb3 b3 +2b,b3 ~8x? by b3 ~6xby by b3 ~bZ b, b3 +

2b2 b3 +3xb§ - x> b} +3b; b} +x7 by b} ~x b, b +b3)
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The conditions for getting the common roots of fand g on y and also on x are derived as

Reduce[-y + b, - by by +y b == @, y, Reals]

(b3 = -188&b; == -by) || (b3==18&b;y==by) || (3.12)
((b3<—1 [|-1<bs<1||bs>1) &&y::%)
~1+b?
Reduce[-x +b; - by b3 + xb] == @, X, Reals]
(b3 == -18& by = -by) || (b3 =18&b;s==b,) || (3.13)
((b3<71 | -1<bs<1||bs>1) &&x:%)
1402

Therefore a solution on (x, y) of the equations (3.10) and (3.11) in the parameter space (), is given by

-b;+b, b -by+b; b
1 2231 2 123 . (314)
~-1+bs -1+bs

Here we should remark that the solution of the equations (3.10) and (3.11) is only one in the invertible space ;.

To prove this fact the polynomials Ry/ in (3.10) and Rx/ in (3.11) should have no roots in (,, where

Ryl = (3.15)
—ybZb2 +b3 +2yb3 +y?b3 +y?bZb3 -ybs -2y’ b5 -y> b5 +
4yblbs-4b;bybs -10yb; by bs -4 y?b; by by -4 y? b3 by bs +
by b3bs +2ybs b2bs +11y? by b3 by +4y> by b3 by —y? bl b bz +
4y?byb3bs +8b212yb? +6y?b? +y> b -4b7 b3 +
6yb2bZ -2y>b2bZ +ybibZ +2y?bib2 +y>biblab,bs -
12ybyb? ~15y? by b2 ~4y> by b2 ~bZ by b3 ~2yb? by b -
11y? b2 b, b2 -4y’ b2 b, b2 +4b3bZ -6y b3 b3 +
2y>bZb2 +ybib2bZ -4yb3b? -4b; b3 +
12yb; b3 +15y? by b3 +4y> by b3 ~b3 b3 -2y b] b3 -
y2bib3 +4bibyb3 10y by by b3 +4y? by by b3 -
8b% -12y b3 -6y*bs -y’ b3

Rx1 = by b3 ~xbZb2 ~xb3 +2b; b3 +2x%b; b3 ~xbib3 -2xb5 - (3.16)
X3 b} +bybd +x?by bl —xbS —by +xbybs -2b2bs +2xb3b; -
b¥bs +xbSb; ~3bybs ~x?by by +6xbybybs -2b2bybs -
6x2b2by by ~biby by -x2bibybs ~2b2b; ~2x7 b2 by +
5xbybZb; +4x> by b by +x b3 b2 by + b3 by +blbs -3xbZ +
X3b2 2byb2 +8x7 by b2 +AxbIbI -2x3bIb2 b3 b2 +
2xbfbZ +x3bib2 -5xbybZ -4x3b, b2 -5xbZb, b2 -
4x3b2by b2 ~2b3 by b2 —2x7 b3 by b2 —4x b2 b2 +2x3 b b2 +
2b; b2 b2 +6x7 by b2 b2 +x b2 b2 b2 2 x b3 b2 +5x by b3 +
4x3byb3 +2b2b3 +2x7b2b3 +xbib3 +2b,b3 -8x2b, b3 -
6xbybyb3 ~b2by b3 +2b2b3 +3xbt -x3 b +3by bl +

x? by b5 - x b, b3 +b3.
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They are both the 3rd polynomials on y and on x. It seems to be not easy for us that the equations Ry/ = 0 and Rx/ = 0
have no roots in ;. Then we have not given the proof yet, and it must be a future work for us.

3.5. MA(2) model fitting to the MA(4) process.

Until now we have no counter example for uniqueness of the MA(2) parameters. From (2.6) the function S, 4(x, y) is
given as

1

S X =
2,4 (X% V) = ey o

(3.17)

(-1-y+2xby-b7 -ybi -2x7by +2yby +2y’ by +
2xbyby -b3 -yb3 +2x> b3 -4xybs -2xy*bs -
2x?by b3 +2ybyby +2y*by by +2xby bz ~b? —yb? -
2x% by +6X2yby -2y° by +2x2y? by -2y’ by +2x> by by -
4xybybys-2xy?byby -2x2byby +2ybyby +2y? by by +
2xbsby -bZ -ybZ).

A typical function S, 4(x, y) has the one local minimum point as follows. When MA(4) process has parameters {0.1.,
0., -0.85, -0.01}, the function S 4(x, y) is given as

1

S X = x
24 0 Y) = Ty ey

(3.18)
(-1.7326 +0.217 x +0.17 x* -1.702 x> +0.02 x* -

1.9026y + 3.404xy -0.06 x>y -0.15y? +1.702 x y? -
0.02x°y* +0.02 y?)

The cross section of the function S, 4(x, y) on €, is given in Figure 3.2, and the function has a locally minimal points
in the MA(2)- parameter space (.

Figure 3.2. Cross section of S5 4(x, y) on Q.
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3.6. MA(2) model fitting to the MA(g) process for g = 5.

In this case we have a counter example for uniqueness of the MA(2) parameters. We consider the case g = 5, the
MAC(S) process. From (2.6) the function S, 5(x, y) is given as

1

S X =X
25 %6 Y) = ey ay)

(3.19)

(-1-y+2xby-b] -yb; -2x"by +2yby +2y* by +

2xbyby -b3 -yb2 +2x>bs -4xybs -2xy?bs -

2x2bybs +2ybybs +2y?bibs +2xbybs ~bZ —ybZ -2x%b, +
6x2yby, -2y?by +2x2y?*by -2y> by +2x> by by -4xybyby -
2xy? by by -2x2byby +2y by by +2y? by by +

2xbzby -bZ -ybZ +2x°bs -8x>ybs +6xy?bs -2x> y? bs +
4xy> bs -2x*b;bs +6x?ybybs -2y? by bs +
2x2y?b;bs -2y’ by bs +2x> by bs ~4xy b, bs -

2xy?’b,bs -2x2b3bs +2ybs bs +

2y?b3bs +2x by bs -bZ -y bZ).

When MA(S) process has parameters {0.1., 0., -0.85, -0.01., 0.1}, the function S, 5(x, y) is derived as

1

S X = X
2,5 (X, ¥) (-1+y) (1-x+y) (1+x+y)

(3.20)
(-1.7426 +0.215x +0.34 x> -1.702 x° -

3.46945x10718 x* 1 0.2 x> -2.0826y +3.404xy +

1.38778x107V x?y -0.8x>y -0.34y% +2.302x y? +

3.46945x10718 x? y? 0.2 X7 y? -

3.46945x107% y? + 0.4 x y?)

Figure 3.3 shows that the S, 5(x, y) has the two local minimum points in the MA(2) parameter space (),

such that {y=0.860, x=0.882}, {y= -0.276, x= -0.204}. See Appendix 3.2.
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Figure 3.3. Cross section of S5 5(x, y) on Q.

Also from (2.6) the function S, (x, y) is given as
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1
X
(-1+y2) (1-y1+Y2) (1+¥1+Y2)

S2,6 (X, Y) = (3.2

(-1 -bF -b -b3 -b7 -b2 b} +2b3y; +2bybyy; +2byb3y; +
2b3byy; +2bybsy; +2bsbgy; *ZbZYf *2b1b3y12*2b2b4y12 -
2b3bsy; -2bsbsy; +2bs3y] +2bybyy; +2b;bsy; +2b3bgy] -
2b4,\’§ *2b1b5yf *szst/f +2b5,V15 +2b1b5y15 72b5yf -Y2 -
bfy, +2byy, ~b3y, +2b1 b3y, -b3 y, +2bybgy;, b2y, +
2bsbsy;, -bZy; +2bsbsy, -bZy, ~4bsy1y, ~4bibsy  y, -
4bybsy1 Y, -4b3bsy1 Y, +6bsyiy, +6bybsyiy, +6bybsy; Y, -
8bsyly, -8bibgyly, +10bsyiy, +2byy2 +2bibsys —~2byy3 +
2bybsy; -2bybsy; +2b3bsys ~2bybgy3 +2bsbsy; -2b3y1 Y5 -
2b;byy;y3 +6bsy; Y3 -2bybsy; y3 +6bybsys Y3 -2bsbgy; y3 +
2byy; y3 +2b1bs yi ys —12bgy3 y3 +2 by b yi y3 ~2bs y3 y3 -
2b1bsyiy; +2bgy;y3 -2bsy3 -2b1bsy3 +2bsy3 -2bybsy3 +
4bsy;y3 +4bibsyiy; -6bsyiy; +2bsy3).

For an MA(6) process with the parameters {0.1., 0., -0.85, -0.01., 0.1, 0.1} and with unit noise
variance, we have

Sz,6 (X, Y) = —
2,6 1% (-1+y) (1-x+y) (Lex+y)

(3.22)

(-1.7526 +0.235x +0.342x% -1.872 x> -3.46945x1071° x* +10.22x° -
0.2x%-2.0946y +3.744xy +1.38778x107 x? y -0.88x%>y +1. x*y -
0.342y% +2.532xy? -1.2x%y? -0.22xX° y? +
0.2x*y? +0.2y’ +0.44xy> -0.6 X’ y* +0.2 y*)

n.s"
0g T 1
-1 > | m_,m—:r»“ﬂ‘[l ;'\' |

| | W“du.;
| 7~

/
| &
L 1
-2 -1 i f

Figure 3.4. Cross section of S, ¢(x, y) on ;.

When S, 5 (x Y ‘ 51 s e vy 55 ) has 2 locally minimal points in the parameter space ();, we want to know the
condition of the MA(6) parameter bg that S; ¢ (x Y ‘ 51 s e vy 55 ) bs) also has 2 locally minimal points in ;.
Figure 3.3 and Figure 3.4 show that both S, 5 (x, y ‘ 51, ey 65 ) and S; ¢ (x, y ‘ 51, ey 55, bs) with

bg = 0.1 have two locally minimal points in Q. Then we focus on the difference between the two functions, and define
a residual function such that
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Dys(x, y| b1, .-, bs, be) = Sa6(x, y| b1, ..vs bs, bg) = Sas(x, y| b1, ..o, bs) (3.23)

= ! X
(=1+4y) (I—x+y) (1+x+y)
be(2x(x* -2 y@+ )+ Y G+20) b -2 - Y A+ +
32 YR+ - yS+n+t+ YA+ -2 yG+ )b+
(—x+y @+ ) b3+ (¥ = y(L+ ) by — xbs) — (1 + y) b) .

Figure 5 shows the cross section of the residual function D, ¢ (X, y ‘ bAl, - bA5, 0.1 ) on ),

where { by, bs} = (0.1, 6, -0.85, -0.01, 0.1).

Figure 3.5. Cross section of D, (x, ¥) on Qy.

Figure 3.6. Cross section of S, 5(x, y) on £, (same function of Figure 3.3).

Figure 3.5 shows that the surface of D ¢(x, y) is relatively flat on the area of slash mark in Figure 3.6. Hence it is seen
that the residual function D;¢(x, y) do not influence on the locally minimal points of S, s(x, y). This imply that



Misspecified MA(2) Model Fitting to a Data from Gaussian MA(g) Process 13

S>6(x, y) also have two locally minimal points on the invertible space, since Sy 5(x, y) + Dag(x, y) = Sz6(x, y) . Simi-
larly the function S5 7(x, y) will inherit the property from S, 6(x, ¥) , and so on.

Therefore it may be conjectured that when MA(2) model is fitted to some data generated by MA(q) process for all g >
5, there are more than one MA(2) parameters estimated in the invertible space.

Next we consider the case when S, 4(x, y) in (3.20) and S 5(x, ) in (3.22) such that S, 4(x, y) has only one locally
minimal point but S, 5(x, y) does not have. In this case the residual function D, 5(x, y) is defined by
Dys(x, y| by, .-, bs) = Sas5(x, y |1, w.ry bs) = Saa(x, y| b1, ..o, bg) . (3.24)

1
=X
(=1+y) (I=x+y) (1+x+y)

bs(2(x* + Y2 A+ ) - yB+ )by +2(X — P y@d +y) +
X B+20)+x(2 =y Q@+ W) by + (-2 + y+ ¥ by + xbs) — (1 + y) bs).

When b; = 0.1, by = 0.0, b3 = -0.85, by = -0.01 and bs = 0.1, we have Dy 5(x, y| b1, ..-, bs) and its graph, as follows.

Dys5(x, y) = Das(x, y| by, .., bs) (3.25)

= =— 1 5
(=1+y) (I=x+y) (I+x+y)

(01(=0.1(1+y»)=02(x* + Y (1 + ) -2 yB+y)+
2(0.-0.01x+x5 = y 4+ y) +x)? B +2) - 0.85 (=22 + y + 7).

Figure 3.7. Cross section of D, 5(x, y) on Q.
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Figure 3.8. Cross section of S5 4(x, y) on Q, (same function of Figure 3.2).

0.0 03 o

Figure 3.9. Cross section of S, 5(x, y) on Q, (same function of Figure 3.6).

Since the graph of the shadow area in Figure 3.8 will be put on the back of the upper horse in Figure 3.7, we can say
that the one local minimum point of S, 4(x, y) was divided into two. Under this situation, S 5(x, y) has two local
minimum points. The residual function D, s(x, y) has grasped the key point for the number of the locally minimal
points of Sy 5(x, ).

Next we consider an MA(15) process with the parameters {0, -0.995, 0, (-0.995)"2, 0, (-0.995)"3, 0, (-0.995)"4, 0,
(-0.995)75, 0, (-0.995)76, 0, (-0.995)77, 0.01} and with unit noise variance. Mathematica shows that this MA(15)
process is invertible, as follows.

(*TimeSeriesInvertibility[
MAProcess[{@, -0.995, @, (-0.995)"2, @, (-0.995)73, @, (-0.995)"4, 0.0,
(-0.995)"5, @, (-0.995)"6, 0.0, (-0.995)"7, 0.01}, 1]]*)

True

In this case the function S, ;5(x, y) is given as
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1
S2,15 (X, Y) = i) axy o S (3.26)

-((-9.16646 -0.0193104 x +15.7439 x* +0.030866 x> - 12.7111 x* -
0.019505 x° +10.7849 x° +0.019603 x” - 8.85908 x® - 0.0197015 x° +
6.93345 x'° + 0.0198005 x** - 5.00799 x*? - 0.0199 x** +1.93104 x** +
0.02x¥ -24.9103y -0.0617321x y +38.1332x% y +0.0780199 x° y -
53.9247x*y -0.117618x° y +62.0135x% y +0.157612x” y -62.401 x5 y -
0.198005 x° y +55.0879x%y +0.2388 x1y - 25.1035x2y ~0.28x y -
28.4549 y? - 0.089381 x y? +77.4207 x? y? +0.215535 x> y? -

143.671 x* y? - 0.433334 x° y? +202.996 x° y? +0.732519 x” y? -
232.293x% y? ~1.1143 x° y? +132.457 x*° y? +1.5799 x*1 y? -
1.93104 x? y? ~0.02 x¥3 y? ~23.496 y> - 0.117422x y° +

120.946 x* y° +0.472442 x° y°> -~ 286.966 x* y*> -1.22704 x° y> +
469.205 x° y3 +2.5464 x” y* - 363.694 x5 y> —4.599 x° y* +
21.2415x% y* 1 0.24 x y® ~19.644 y* - 0.157316 x y* +

157.156 x? y* +0.890032 x> y* —454.561 x* y* - 2.92321 x° y* +
545,742 x° y* +7.3164 x” y* - 86.8969 x5 y* ~1.1x° y* ~15.7925 y° -
0.197609 x y° +174.502 x? y° +1.51041 x> y° - 418.591 x* y° -
6.1544 x° y° +162.207 x° y° +2.4x7 y° -11.9414 y° —0.238303 x y° +
129.189 x? y® +2.3765 x> y® ~135.173 x* y® - 2.52x° y® —-6.93903 y” -
0.2794xy’” +40.5519x? y7 +1.12x7 y7 -1.93104 y® -0.14 x y*) ).

The cross section of S, 15(x, y) on £, is in Figure 3.10 below, and the function has only one locally minimal point in
Q.

Figure 3.10. Cross section of S 15(x, ) on Q.

However, in the special case when y = 0.995, the function S5 ;5(x, 0.995) is given by
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Ss,15 (X, ©.995) = (3.27)

(-1)
=
(-1.92-x) (-1.92+X)

12.5 (-111.048 - 0.858341 x +539.087 x* +4.35185 x> - 1090.87 x* -
9.1284 x> +1102.89 x° +9.59068 x” - 608.337 x5 -

5.51423 x° +186.266 x*° +1.76361 x* -29.7377 x*? -

0.294428 x1 +1.93104 x** + 0.02 x°) .

From Figure 3.11 it is remarkable that S, 5(x, 0.995) has 6 locally minimal points in -2 < x < 2.

—2

Figure 3.11. Graph of S, ;5(x, 0.995) on -2 < x < 2.

4. Conclusions.

We have considered some problems for misspecified MA(2) model fittings to a data of Gaussian MA(gq) process with
unite noise variance. To estimate the MA(2)-parameters we introduce a function S, 4 (x, y) for the conditional
maximal likelihood estimation. Our discussions focus on the numbers of the locally minimal points of the function on
the invertible space of MA(2) model. The considerations are as follows.

(1) If MA(2) model is fitted to MA(3) process with parameters (bz, by, bs), the MA(2)-parameters (x, y) are uniquely
estimated in the invertible parameter space, or not. The answer is yes, and the estimator is given by

( '—b’;—l;‘;bi 5 '—bi*—';‘;bi) . However, though regrettable, a part of the proof is incomplete yet.
-1+b3 -1+D3

(2) If MA(2) model is fitted to MA(S) process and MA(6)process, then the MA(2)-parameters (x, y) are not uniquely
estimated in the invertible parameter space. We showed the examples that there are two MA(2)-parameters in the
invertible space. However, in the case of MA(4) process, the example of this kind is not yet found. Moreover, a proof
of the estimated MA(2) model being restricted to one is not made, either.

(3) If MA(2) model is fitted to a data from MA(g) process for some g = 5 which the MA(2)-parameters are not
uniquely estimated in the invertible space, then there is a data from MA(g+1) process that the MA(2)-parameters are
also not uniquely estimated in the invertible space, or not. In this paper we discussed the problem in the cases g = 4
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and ¢ = 5 by introducing the residual functions D, 5(x, y) and D, (x, y). Then it may be conjectured that when we

consider the MA(2) model fitting to MA(g) process for g = 5, there exists a data of MA(g) process which has more
than one estimators of MA(2)-parameters in the invertible parameter space.

(4) How many is the maximum of the number of the estimated MA(2) models fitted to MA(g) process? The maximum
number is two despite former.

Appendixes.

Appendix 1. The estimated MA(2) model has the parameters (bs, 0).

For the object function S, 3(x, y) we set it r0203.
(*r0201=r0203/.{b,~»0,b3-50} )

~1-y+2xby-b2-yb?

(-1+y) (1-x+y) (1+x+Yy)

(#dx00=0,r0201//Simplify
dy@0=0,r0201//Simplify«)

(-2x (Q+y) +2 (X + (1+y)?) by -2x (1+y) b]) /((-1+y) (1-x+y)* (1+x+y)?)

(2 (-x*+y (L+y)?+x (1+x*-2y-3y*) by + (X" +y (1+y)?) b7))/
((-1+y)? @ -x+y)® (L+x+y)?)

(*dnxy@={Numerator [dx00] ,Numerator [dy@o] }//Factor
*)

{2 (-1-y+xby) (x-by1-yby),
2 (-x*+y+2y’+y>+xby+x> by -2xyby -3xy* by - x* b} +ybl + 2y’ b} +y’ bi)}

(xSolve[dnxy@=:{0,0}8&&1-y*>08& (X-X ¥) (-X+X y)+(1—y2)2>0&&1—b12>0, {X,y}]*)

{{x - ConditionalExpression[b;, -1<b; <1], y > ConditionalExpression[@, -1<b;<1]}}

Therefore we have the MA(2) parameters x = b; and y = 0.

Appendix 2. The estimated MA(2) model has the MA-parameters (by, b).

For the object function S, 3(x, y) we define vector d20 of its derivative on x and y, such that
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d20 = {-x-xy-Xx (1+y) b} -x (1+y) b3 +3x>b3- x*by-2yb;+4x’>ybs-5y*by+2x*y?bs -
4y’by-y*by-xb-xyb+by (1+x*+2y+y*+ (x*+ (1+y)?) bp-2x (1+y) bs) +
ba (-2x (L+y) + (x*+ (1+y)?) bs),
ey 2yt eyt e (P ey (1+y)?) bi s (<X ey (1+y)%) b3+
2xb3—x3b3+x5b3+2xyb3—4x3yb3+3xy2b3—2x3y2b3+4xy3b3+xy4b3—
X*b3+yb3+2y? bl +y> b3 by (x*-2x7y (2+y) + (1+y)® (1+y?) -x (1+x* -2y -3y*) bs) -
by (-x (1+x*-2y-3y?) -x (1+x*-2y-3y*) by+ (x*-2X*y (2+y) + (1+y)® (1+y?)) b3) };

(#d200=d20/ . {b;>-0.0}
*)

{0. -x-xy-x(1+y)bl+ (0. -2x (1+y)) b, -
X (1+y) b§+b1 (1. X222y +yte (X2+ (1+y>2) bz);

0. Xy +2y’+y’+ (X ry (1+y)?) bl - (. +x*-2X7y (2+y) + (1+y)® (1+y?)) by +
<—x2+y(1+y)2) b3 - by (0. —x<1+X2-2y—3y2) - X (1+X2'2y_3y2) bz)}

(xTimeSeriesInvertibility [MAProcess[{b;,b;},1]]*)

1-b3>08& (by~byby) (~by+byby) + (1-b3)°>0

(*solvel =
Solve[d200 == {0, 0}&& 1-y?>08& (X-X y) (-X+X y)+(1-y?)’>08&1-b%>08&
(bi-by by) (-by+by by)+(1-b2)?>0, (x, y}, Reals]x)

Hx - ConditionalExpression[by,

(-2.<b; <@& -1. -1.b;<by<1.) || (@<by;<2.&-1. +by<by<1.)],
0. +by; by
y»ConditionalExpr‘ession{i, (-2.<b;<08& -1.-1.by;<by<1.) ||
by

(0<b1<2.&&—1.+b1<b2<1.)”}

Therefore we have the MA(2) parameters x = by and y = b,.

Appendix 3.1.

(*model@3=MAProcess[{0,0,b3},1]
{TimeSeriesInvertibility[model@3],WeakStationarity[model@3]}x)

MAProcess[ {0, @, by}, 1]

{1-b7>088& (1-b3)°>088& (1-b2)*>0, True}
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(#d200=d20/ . {b,0,b,-0} //Simplifyx)

{—cx4— (1+c2)x (1+y) -cy (1+y)? (2+y) +cx? (3+4y+2y2),
Xy (1ey)?+ P (P ry (1+y)?) rex (2+xt 2y 3yPeay’ oyt ox (1+4y+2y7)))

(*model@=MAProcess[{0,0,c},1]
{TimeSeriesInvertibility[model@],WeakStationarity[model@]}x)

MAProcess[{@, @, c}, 1]

{1-c*>088 (1—c2)2>0&& (1—c2)4>0, True}

(xso0lve = Reduce[d200 == {0, 0}&& 1-y’>>@8&(X-X y) (-X+X y)+(1—y2)2>0&&—1<c<1,
{x, y}, Reals]«)

-1<c<18&8x==088Yy ==

We have the solution (0, 0) as the parameters of the MA(2) model in the invertible space.

Appendix 3.2.

We will solve the equations from the derivative of S, 5 (X, y)onx and y. Here we set 702065 = S, 5 (X, V).

(*NSolve[D[r02065, { {x,y}}]=={0,0}, {X,y},Reals] %)

{{y—1.11251, x > 1.08466}, {y —»11.5387, x > -3.15815},
{y—0.860788, x > 0.882024}, {y—8.72189, x »2.90865}, {y > -0.682801, x > -0.717651},
{y >0.525101, X - 0.585409}, {y > -0.276583, x > -0.203849} }

Then there are 7 critical points, but in the invertible space there exist 3 points only.

(xsol=NSolve [D[r@2065, { {X,y}}]={0,0}8&1-y*>08& (X-X ¥) (-X+X Y)+ (1—y2)2>e, {X,y},Reals]«)

{{y >0.860788, x ->0.882024}, {y ->0.525101, x - 0.585409}, {y - -0.276583, X - -0.203849} }

(*SigneDet [D[r02065, { {X,y},2}]1]1/.501%)

{1, -1, 1}

Hence we have two locally minimal points of S, s (x, y) {y—0.860788, x—»0.882024} and {y—-0.276583, x—>-0.203849}.

19
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