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Estimation of the Hurst Exponent for the Daily Sunspot Number
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Abstract. This paper deals with the estimation of the Hurst exponent of the International relative sunspot number
data. We focus on three data sets of the yearly, monthly and daily sunspot numbers, and individually we consider
the estimation of the Hurst exponent of them by use of three methods, (1) Variance plot; (2) Rescaled range
method (R/S); and (3) Partial sum of the absolute auto-covariances. We compare these results.
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1. Introduction

The Hurst exponent for a data set is known that it provides a kind of measure of whether the data is a short mem-
ory process or is a long memory process. The long memory process has the very long autocorrelations.

“There are a variety of techniques for calculating the Hurst exponent. The accuracy of the estimation can be a very
complicated issue.” (see, Ian Kaplan, www.bearcave.com).

In Matsuba[6], the Hurst exponent of the yearly sunspot number (1700~2004) is estimated by H


= 0.813 by R/S
statistics (given in Section2 Method (2) for this paper). Also for the data of monthly sunspot number

(1749.1~2005.9), H


= 0.745 by using the partial sum of the autocorrelation function (Method (3) in Section2) (see
also Fanchiotti, etc.[4]). From these results it is seen that the data set of the sunspots must be a long memory
process.

In this paper our main object is to estimate the Hurst exponent of the daily sunspot number. Here we use a daily
averages of the International Sunspot Number (published in Solar Influences Data Analysis Center (SIDC) in
Belgium, Source: WDC-SILSO, Royal Observatory of Belgium, Brussels). It should be noted that daily values for
years prior to 1849 are partly missing. The available data for this paper is for the period 1 January 1868 through 31
December 2016 plotted in Figure 1.3.
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Figure 1.1. The yearly sunspot number from 1700 through 2016.
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Figure 1.2. The monthly sunspot number from 1749.1 through 2016.12.
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Figure 1.3. The daily sunspot number from 1 Jan. 1868 through 31 Dec. 2016.

Similar to the yearly and also the monthly averaged sunspot numbers in Figure 1.1-2, the level of the daily sunspot
number seems to oscillate with an approximate period of 11 (see for example, Cowpertwait [3] and Thomas [7] ).
But the series is fluctuating widely and sharply, and it has many zeros (see Figure 1.3) and the ratio of zero number
is about 15%. So it looks more difficult to get an appropriate estimator of the Hurst exponent directly than those of
the yearly and the monthly series.

In Section 2 we introduce three heuristic methods for detecting and assessing the strength of long-memory, and
define the Hurst exponent (coefficient, or parameter). In Section 3, we discuss data examples and consider the
estimation of the Hurst exponent for the data sets; the yearly, monthly and daily sunspot numbers, independently.

This paper is supported by the computer software Mathematica V11.0 and also its application Time Series Pack
for Mathematica ([5]).

2. Methods for estimating the Hurst exponent parameter.

Let {Xt} be a stationary linear process defined by

Xt = 
j0


a j Εt j , (2.1)

where Εt (tZ) are independent identically distributed variables with variance ΣΕ2. The autocovariance function of
Xt is then given as
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ΓX h  ΣΕ2 
j0


a j a jh  h  Z  . (2.2)

If the L2- linear process Xt has a condition such that, for sufficient large j,

a j  O � j d1�  0  d  1 2 , (2.3)

then the process is called a long-memory process. In this case the autocovariance function has the condition, for
sufficient large h,

ΓX h  O � h 2 d1�  0  d  1 2  (2.4)

(see, for example, Beran [1], Blockwell [2] and Matsuba [6] ).

The autocorrelation function ΡX h  ΓX h ΓX 0 also has the condition (2.4).

It is notable that the definition of the long memory is an asymptotic matter, therefore it is often difficult to detect
and quantify by use of finite samples.

The Hurst exponent (parameter) H is equal to d + 1/2. If the process is a long-memory process, then 1/2 < H < 1.
In the next section, we shall deal with the estimation of the Hurst exponent of the daily sunspot number plotted in
Figure 3 from 1869.1.1 to 2016.12.31.

There are many methods to estimate the Hurst exponent.

Following Beran [1], we consider the following three methods (these methods are mainly useful for descriptive
purposes).

(1) Variance plot

Dividing the series {Xt} into m non-overlapping, adjacent blocks of length k, where the length of the series is n =
[m k], then

X k j  1
k 

t1 j1 k

j k

Xt  j  1, 2, 3, .. m, (2.5)

S2k  1
m1 

j1

m
�X k j  x�2, (2.6)

where x is a overall mean. It is known that when k,

Var �X k j�  Const kΒ � Const k2 H2�. (2.7)

To estimate the parameter H we calculate S2k for k = 2,3,..., [n/2], and plot log S2k against log k. Then the slope
of the regression line will be an estimator of the -Β = 2H-2. When k,

log S2k  Const  2 H  2 log k. (2.8)

(2) Rescaled range method (R/S)

The rescaled range statistics was first introduced by Hurt (1951), and a simpler expression form is
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Rn max1kn t1
k Xt  xn min1kn t1

k Xt  xn
(2.9)

Sn
2  1

n1 
t1

n
Xt  xn2 (2.10)

Limiting properties of the R/S statistics were investigated by Mandelbrot (1975) (see Beran [ ]). Under some
conditions, it is seen that, as n,

E Rn Sn  ConstnH , (2.11)

where H is known to Hurst exponent (parameter). Taking the logarithm on both side of (2.4), we have

Log  ERn Sn  Const  H log n. (2.12)

Therefore, the parameter H is interpreted as the slope of a regression line of log Rn Sn against log n. It should be

notable that the R/S method has a practical problem that it is not robust against departures from stationary of the
series (see Beran [1]).

(3) Partial sum of the absolute autocovariance function

For the sample autocovariance function

Γj   1
nj 
t1

njXt  x  Xtj  x , (2.13)

we denote the partial sum of the absolute autocovariance function

S0k  
j0

k
Γ j (2.14)

S3k  
j0

k
Γ j (2.15)

Then it is known that when k,

S3k  Const k2 d �  Const k2 H1�. (2.16)

The sample autocorrelation function ΡX  j  ΓX  j ΓX 0 also has the condition (2.16).

When we plot log S3k against log k, we can get the slope of the regression line that will be an estimator of the

2H-1.

log S3k  Const.2 H  1 log k. (2.17)

3. Data examples; the Hurst exponent of the Sunspot number data

We calculate the three estimators of the Hurst exponent defined in Section 2 for the yearly, monthly and daily
sunspot numbers each .
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 3.1  Yearly sunspot number

(1) Variance Plot

We calculate S2k for k = 2,3,...,80, and plot S2k against k in Figure 3.1.1.
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Figure 3.1.1 Plot of S2k against k and the fitted exponential curve.

The out-put from Mathematica program (NonlinearModelFit) is given as

fit 
最最最最最最モモモ

NonlinearModelFitlistv01, a^bx, a, b, x

fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 4271.15 0.14789 x �

�4271.15 0.14789 x, 0.953854,

Estimate Standard Error t-Statistic P-Value

a 4271.15 393.095 10.8654 4.442791010

b 0.14789 0.0158655 9.32145 6.53476109

�

3453.67, 5088.64, 0.114896, 0.180884

解く

Solve2 H0  2  0.148, H0

H0  0.926
In the case when k > 13, the estimated exponential function is not fitted well, and thus the estimated exponent

number may be large. Thus the estimate H


= 0.926 may not be good, it seems to be too large (too near 1.0).

On the other hand, we transform the values {S2(k)} to the logarithm {log[S2(k)]}, and fit a regression line to this
data. Figure 3.1.2 shows that the regression line fits well.

1 2 3 4 5
logt

5
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7

8

log�St�

Figure 3.1.2 log S2t vs. log t and the regression line.
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The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最モモモモモモモ

LinearModelFitlistr0, x, x

fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 8.69937  0.787918 x �

�8.69937  0.787918 x, 0.912876,

Estimate Standard Error t-Statistic P-Value

1 8.69937 0.130455 66.6851 4.771231035

x 0.787918 0.0437183 18.0226 5.539151018

�

8.43331, 8.96543, 0.877083, 0.698754
The linear function is log(S(t)) = 8.70 - 0.79 log(t) with R-squared 0.913. The fitted slope is close to Β  0.788
with the 95% confidence interval (-0.877, -0.699), and this implies the Hurst exponent is estimated to 0.606 with the
95% confidence interval (0.562, 0.651).

(2) Rescaled range method (R/S)

Let Qk  Rk Sk in (2.4).

The case when k  317, we have the 4 statistics

{j, Qk , H0, Rk, Sk}

=1, 33.4097, 0.609291, 2071.36, 61.9988.

Also when k = 158, we have two sets of statistics

1, 25.3397, 0.638481, 1492.96, 58.9178, 2, 26.0503, 0.643944, 1680.07, 64.4932.

50 100 200
log k

5

10

20

log Qk

Figure 3.1.3 log Qk vs. log k and the regression line.

The out-put from Mathematica program (LinearModelFit) is given as

FittedModel� 0.235883  0.669832 x �

�0.235883  0.669832 x, 0.993265,

Estimate Standard Error t-Statistic P-Value
a 0.235883 0.15434 1.52833 0.132732
b 0.669832 0.0434609 15.4123 1.249871020

�
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0.545885, 0.0741185, 0.582538, 0.757126
Then the slope of a regression line of log Rn Sn against log n is 0.670 with 95% confidence interval (0.583,

0.757). This shows the estimator H
�
＝0.67 with 95% confidence interval (0.583, 0.757).

(3) Partial sum of the absolute autocovariance function

we consider the sample autocorrelation function of yearly sunspot number instead of the autocovariance function.

20 40 60 80
h

0.5

0.5

1.0

acf
acf

Figure 3.1.4 The sample autocorrelation function.

The sample autocorrelations Ρk in Figure 3.1.4 decay slowly with increasing lag h. This phenomenon indicates log
memory, or long-range correlations. Also the sample power spectral density in Figure 3.1.5 has a frequency 0.58 (a
period 10.81 year).

Figure 3.1.5 The sample power spectral density.

We plot log S0k against log k, for k=1, 2, ,.., 80, for autocorrelations. Figure 3.1.6 does not indicate the condition

(2.15).
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Figure 3.1.6 Plot of partial sums S0k for k=1,2,3,..., 80.

We then plot S3k against k, for k=1, 2, ,.., 80, for the absolute autocorrelations in Figure 3.1.7.
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Figure 3.1.7 Plot of partial sums S3k for k=1,2,3,..., 80.

Next we plot log S3k against log k, for k=1, 2, ,.., 80, for the absolute autocorrelations. Figure 3.1.8 will indicate

the condition (2.16).
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log�k�

1

2

5

10
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Figure 3.1.8 log S3
2k vs. log k.

We then fit a linear function of time t to the data. The regression line is log S3k = 0.075 + 0.641 log k. It is plotted

in Figure 3.1.9.
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Figure 3.1.9 The log-log-plot with a regression line.

The out-put from Mathematica program (LinearModelFit) is given as

�0.0751236  0.641493 Logt, 0.984106,

Estimate Standard Error t-Statistic P-Value
1 0.0751236 0.0326787 2.29885 0.0241909
Logt 0.641493 0.00923071 69.4955 6.39131072

�

0.0100652, 0.140182, 0.623116, 0.65987
The fitted slope is close to Β  0.641, and this implies the Hurst exponent is close to 0.821 with the 95% confidence
interval (0.812, 0.830).

 3.2   Monthly sunspot number

(1) Variance Plot

We fit a exponential function of k to the data S(k).

200 400 600 800
k

1000

2000

3000
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S�k�

Figure 3.2.1 S(k) vs. k and the fitted exponential curve.

The out-put from Mathematica program (NonLinearModelFit) is given as

FittedModel� 4648.9 0.011426 x �

�4648.9 0.011426 x, 0.997904,

Estimate Standard Error t-Statistic P-Value

a 4648.9 37.6669 123.421 3.406371091

b 0.011426 0.000379672 30.0943 1.1031044

�

Estimate Standard Error Confidence Interval
a 4648.9 37.6669 �4573.91, 4723.89�
b 0.011426 0.000379672 �0.0106701, 0.0121818�
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解く

Solve2H  2 0.0114, H

0.5 0.012  2, 0.0107  2

H  0.9943
0.994, 0.99465

The fitted function is S(k) = 464879 07011 x. It is plotted in Figure 3.2.1.

Then we have H

＝ 0.994 with the 95% confidence interval (0.994, 0.9945).

Next, we transform the values {S2(t)} to the logarithm {log S2(t)}, and fit a regression line to this series shown in
Figure 3.2.2.

2.5 3.0 3.5 4.0 4.5 5.0 5.5
logt

6.5

7.0

7.5

8.0

log�St�

Figure 3.2.2 log-log-plot of log S2t vs. log t.

The out-put from Mathematica program (LinearModelFit) is given as

FittedModel� 10.0297  0.613815 x �

�10.0297  0.613815 x, 0.892909,

Estimate Standard Error t-Statistic P-Value

1 10.0297 0.155167 64.6382 1.616791027

x 0.613815 0.0443247 13.8481 1.205141012

�

Estimate Standard Error Confidence Interval
1 10.0297 0.155167 �9.70872, 10.3507�
x 0.613815 0.0443247 �0.705507, 0.522122�

The linear function is logS(t) = 10.030-0.614 log t. The fitted slope is close to Β  0.614, and this implies the
Hurst number is estimated to 0.693 with the 95% confidence interval (0.647, 0.739).

(a) In the case for k < 4000, the regression line is log Q(k) = 8.848 - 0.208 log k shown in Figure 3.2.3.
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Figure 3.2.3 log-log-plot of log S2t vs. log t.

The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最最最最最モモモ

NonlinearModelFitlistr0, a  b x, a, b, x

FittedModel� 8.8478  0.208286 x �

fit"BestFit", "RSquared", "ParameterTable"

�8.8478  0.208286 x, 0.999981,

Estimate Standard Error t-Statistic P-Value

a 8.8478 0.0615639 143.717 1.144491027

b 0.208286 0.0203709 10.2247 1.11676108

�

fit"ParameterConfidenceIntervalTable"

Estimate Standard Error Confidence Interval
a 8.8478 0.0615639 �8.71791, 8.97769�
b 0.208286 0.0203709 �0.251265, 0.165307�

解く

Solve2H  2 0.208, H

0.5 0.251  2, 0.165  2

H  0.896
0.8745, 0.9175

We have H

＝ 0.896 with the 95% confidence interval (0.875, 0.918).

　(b) In the case for 4000 < k <10000, the regression line is log Q(k) = 11.143 - 0.867 log k in Figure 3.2.4

2.5 3.0 3.5 4.0 4.5 5.0 5.5
logt

6.5

7.0

7.5

8.0

log�St�

Figure 3.2.4 log S2t vs. log t and regression line.
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The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最最最最最モモモ

NonlinearModelFitlistr0, a  b x, a, b, x

FittedModel� 11.1434  0.866603 x �

fit15"BestFit", "RSquared", "ParameterTable"

�11.1434  0.866603 x, 0.961096,

Estimate Standard Error t-Statistic P-Value

1 11.1434 0.265268 42.0079 1.136321010

x 0.866603 0.0616436 14.0583 6.36355107

�

fit15"ParameterConfidenceIntervalTable"

Estimate Standard Error Confidence Interval
1 11.1434 0.265268 �10.5317, 11.7551�
x 0.866603 0.0616436 �1.00875, 0.724452�

解く

Solve2H  2 0.867, H

0.5 1.00875  2, 0.724452  2

H  0.5665
0.495625, 0.637774

We have H

＝ 0.567 with the 95% confidence interval (0.496, 0.638).

(2) Rescaled range method (R/S)

The regression line is Q(k) = -0.105 + 0.773 k in Figure 3.2.5.

500 1000 2000
log k

100

200

log Qk

Figure 3.2.5 log-log-plot with a regression line.

The out-put from Mathematica program (LinearModelFit) is given as

格格

Grid
転転

Transpose, fit &"AdBustedRSquared", "RSquared",
整整

Alignment 
左

Left

AdjustedRSquared 0.998595
RSquared 0.998665
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fit"ParameterConfidenceIntervalTable"

Estimate Standard Error Confidence Interval
a 0.105072 0.272916 �0.657562, 0.447419�
b 0.773379 0.0445996 �0.683092, 0.863666�

We have H

＝ b = 0.773 with the 95% confidence interval (0.683, 0.864).

(3) Partial sum of the absolute autocorrelation function :

200 400 600 800
h

0.5

0.5

1.0

acf
acf

Figure 3.2.6 Sample acf of the monthly sunspot numbers.

The sample autocorrelations Ρk decay slowly with increasing lag k. This phenomenon indicates log memory, or
long-range correlations.
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Figure 3.2.7 Partial sums S0k for k=1,2,3,..., 804.
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Figure 3.2.8 Regression line on log S3k against log k.
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The out-put from Mathematica program (LinearModelFit) is given as

flog 
最最モモモモモモモ

LinearModelFit
対対

Logac01, 1,
対対

Logt, t;
通通の式に変変

Normalflog

flog"RSquared"

0.494386  0.69671 Logt
0.991336

flog"ParameterConfidenceIntervalTable"

Estimate Standard Error Confidence Interval
1 0.494386 0.013286 �0.468306, 0.520465�
Logt 0.69671 0.00229853 �0.692199, 0.701222�

flog"ParameterConfidenceIntervals"

0.468306, 0.520465, 0.692199, 0.701222

We fit a linear function of time k to the series. The linear function is S3k = 0.494+0.697 log k and is plotted in

Figure 3.2.8. “R-Squared” is 0.991. The fitted slope is close to Β  0.697, and this implies the Hurst number is
close to 0.849 and the 95% confidence interval of the H will be (0.846,0.850).

 3.3  Daily sunspot number

(1) Variance Plot

2000 4000 6000 8000 10 000
k

1000

2000

3000

4000

5000

6000

S2�k�

Figure 3.3.1 S2k vs. k and the fitted exponential curve.

The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最最最最最モモモ

NonlinearModelFitlist000, a^bx, a, b, x

fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 5186.71 0.000435469 x �
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�5186.71 0.000435469 x, 0.964934,

Estimate Standard Error t-Statistic P-Value

a 5186.71 138.652 37.4082 7.915611060

b 0.000435469 0.0000168827 25.7939 1.785511045

�

4911.56, 5461.86, 0.000401966, 0.000468973

解く

Solve2H  2 0.00044, H

H  0.99978
It is seen that estimated Hurst exponent numbers H


= 0.9998 which seems to be too large.

2 4 6 8
logk

6.0

6.5

7.0

7.5

8.0

8.5

logS2k

Figure 3.3.2 log S2k vs. log k and the regression line.

The out-put from Mathematica program (LinearModelFit) is given as

fit  LinearModelFitlog20, x, x
fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 11.1253  0.531668 x �

�11.1253  0.531668 x, 0.670453,

Estimate Standard Error t-Statistic P-Value

1 11.1253 0.310385 35.8437 3.928021058

x 0.531668 0.0376532 14.1201 2.33271025

�

10.5094, 11.7413, 0.60639, 0.456947

The linear regression line is Log S2(t) = 11.125 - 0.532 Log(t). The estimate is H


= 0.734 with 95% confidence
interval (0.697, 0.772).

Next we fit the line in the case for 4000 < k <10000,
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2 4 6 8
logk
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Figure 3.3.4 log S2k vs. log k and the regression line.
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Figure 3.3.5 log-log-plot of log S2k against log k.

The out-put from Mathematica program (LinearModelFit) is given as

fit  LinearModelFitlog20, x, x
fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"
FittedModel� 9.582  0.375218 x �

�9.582  0.375218 x, 0.190792,

Estimate Standard Error t-Statistic P-Value

1 9.582 0.625101 15.3287 6.053691030

x 0.375218 0.070837 5.29693 5.47585107

�

8.34423, 10.8198, 0.515483, 0.234954

解く

Solve2H  2 0.375, H

0.5 2  0.515482846913814`, 2  0.23495408083363578`

H  0.8125
0.742259, 0.882523

In the case for 4000 < k <10000, we can estimate H


= 0.813 with 95% confidence interval (0.742, 0.883). This

estimate is bigger than that of the overall case (H


= 0.734).
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(2) Rescaled range method (R/S)

　　　(a) For the overall data, we have a regression line, log Q(k) = 0.585 + 0.781 log k .

　　

2000 5000 1 104 2 104 5 104
Logk
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1000

2000

5000

logQ

Figure 3.3.6 log-log-plot with a regression line.

The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最モモモモモモモ

LinearModelFitdata00, x, x

fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 0.584722  0.781415 x �

�0.584722  0.781415 x, 0.905163,

Estimate Standard Error t-Statistic P-Value
1 0.584722 0.218627 2.67452 0.00887239
x 0.781415 0.0265147 29.471 2.482211048

�

0.150446, 1.019, 0.728747, 0.834083

Then we have the Hurst exponent estimator H

＝ 0.781 with the 95% confidence interval (0.729, 0.834).

　　　(b) For large k （k  7776), we have a regression line, log Q(k) = 1.640 + 0.660 log k.
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Figure 3.3.7 log-log-plot with a regression line.

The out-put from Mathematica program (LinearModelFit) is given as

fit7 
最最モモモモモモモ

LinearModelFitdata007, x, x

fit7"BestFit", "RSquared", "ParameterTable"
fit7"ParameterConfidenceIntervals"

FittedModel� 1.64057  0.660101 x �

�1.64057  0.660101 x, 0.894339,

Estimate Standard Error t-Statistic P-Value
1 1.64057 0.500243 3.27955 0.00416505
x 0.660101 0.0534788 12.3432 3.200661010

�

0.589602, 2.69154, 0.547746, 0.772456
It is seen that H


＝0.660 with the 95% confidence interval (0.548, 0.772).

(3) Partial sum of the absolute autocorrelation function

5000 10 000 15 000 20 000 25 000
h
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acf

Figure 3.3.8 Sample acf of the daily sunspot numbers.

The sample autocorrelations Ρk decay slowly with increasing lag k. This phenomenon indicates log memory, or
long-range correlations. It has a frequency 0.0016, this implies that the series has a period 3927 (days), or 10.76
(years).
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Figure 3.3.9 Plot of partial sums S0k for k=1,2,3,..., 2500.
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Figure 3.3.10 Plot of partial sums S3k for k=1,2,3,..., 2500.
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Figure 3.3.11 Regression line on log S3k against log k.

The out-put from Mathematica program (LinearModelFit) is given as

fit 
最最モモモモモモモ

LinearModelFit
対対

Logac01, 1,
対対

Logx, x

fit"BestFit", "RSquared", "ParameterTable"
fit"ParameterConfidenceIntervals"

FittedModel� 0.756954  0.773614 Logx �

�0.756954  0.773614 Logx, 0.995346,

Estimate Standard Error t-Statistic P-Value

1 0.756954 0.00307194 246.409 5.8577831991106692

Logx 0.773614 0.000334582 2312.18 1.13021258541029153

�

0.750932, 0.762975, 0.772958, 0.774269

We fit a linear function of log k to the series. The linear function is log S3k= 0.757 + 0.774 log k. It is plotted in

Figure 3.3.11. The estimated slope is close to Β  0.7736, and this implies the Hurst number is close to 0.8868 with
the 95% confident interval (0.8865, 0.8871).
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Conclusions

We have considered the estimation of the Hurst exponent of the International relative sunspot number data. We
focused on three sunspot numbers, yearly, monthly and also daily sunspots. We individually estimated the Hurst
exponent by use of three Methods (1) ~ (3) given in Section 2.

In Section 3 we identically estimated the Hurst exponent for each sunspots data. The results are given in Table 1
below. It is seen that as the sample size increases, the value of the Hurst exponent becomes large for each sunspots
data.

The features of the three Methods are as follows:

Method (1) : This estimate will be least of these three methods for each data;

Method (2) : Sample size seems to be of no effect upon this estimator;

Method (3) : This estimate will be the most of three methods for each data.

Table 1. The estimated Hurst exponent values by Methods (1) ~ (3)

for each sunspots data.

Method \ Data Yearly Monthly Daily
Method 1  0.926 0.994 0.9998
Method 1 0.606 0.693 0.813
Method 2 0.670 0.773 0.781
Method 3 0.821 0.849 0.887

The Method (1)* in Table 1 is the case when non-linear fitting: an exponential function is fitted directly to the series
S(k) each. This method may be not good, because the non-linear least squared estimation did not seem to work well,
and all the estimated values of the Hurst exponent are too large (too near 1.0).

In Table 1, especially for Method (3), the Hurst exponent of the daily sunspot number is near 0.9 and this implies
that the daily sunspot number must be exactly a long memory process.

It is known that there are many other methods for estimating the Hurst exponent (for example, KPSS statistic,
Detrended Fluctuation Analysis and Temporal Aggregation, see Beran [1]). Statistical comparisons of these meth-
ods would be a future work for us.
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