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Abstract.  We  investigate  some  properties  on  a  misspecified  Gaussian  ARMA(p,q)
model  fitting  to  Exponential  processes  with  order  2  (abbreviated  to  EX(2)  process).
Our  main  purposes  are  to  get  to  know  a  number  of  globally  and  locally  maximal
points  of  the  conditional  quasi-maximum  (Gaussian)  likelihood  function  when  the
sample  size  is  sufficiently  large.  We  shall  derive  a  mathematical  form  of  the
conditional  quasi-maximum  likelihood  function  of  the  ARMA(1,1)  model
parameters,  and  investigate  the  conditions  for  EX(2)  parameters  on  which  the
ARMA(1,1)  conditional  Gaussian  likelihood  function  has  more  than  one  locally
maximal points in the stationary and invertible ARMA(1,1) parameter space.
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1. Introduction
   In time series analysis, some suitable linear models are fitting to a given time series data to predict a future value by
the model.  But, in general,  we do not know the true model  for the series. If a fitted model  is wrong, what kind of
problem arises? When we fit an MA(1) model  to some special  time  series  data  which  is not followed by MA(1)
process, it is known that the MA(1) parameter does not have an unique Gaussian quasi-maximum likelihood estimator.
Tanaka and Huzii [8] investigated the conditions of AR(2) parameters on which the MA(1) quasi-likelihood function
has more than one local maximal  points in the invertible parameter  space (-1, 1). Furthermore, Tanaka and Aoki [7]
gave  the region  for the AR(2) parameters  on which  the MA(1) quasi-likelihood  function has more  than one local
maximal points in the parameter space. In this case, maximizing the likelihood function is equivalent to minimizing the
following function S(x; a, b) when the data length is sufficiently large (see [1], [8]). Here x is an MA(1) parameter and
a and b are AR(2) parameters.

Sx; a, b  1  b  a 1  b x  b 1  b x2

1  b 1  a2  2 b  b2 1  x2 1  a x  b x2 . 1
From Tanaka and Huzii [8], there are two minimal  points of the function S(x;a,b).  For example,  in the case of an
AR(2) process with a = -0.1, b = 0.8, the function S(x;a,b) has a graph shown in figure 1. 

0.1 0.2 0.3 0.4 0.5
Ω

2

4

6

8

Density

0.5 0.5
x

2.4

2.6

2.8

3.0

3.2

3.4
y

  Figure 1.  Graphs of the spectrum and the S(x;a,b) for the AR(2) process  with a = -0.1, b = 0.8.



20 Information Science and Applied Mathematics, Vol. 23, 2015, B.I.I.S., Senshu University

   Applying a stationary ARMA model to time series data in actual time series data analysis, there is a possibility that
two or more candidates for the model parameters  exist, and then we cannot determine the parameters  of the model
well. We also know that the ARMA(1,1) model seems to be more sensitive than MA(1) model about incorrect discern-
ment. Therefore, if such a phenomenon appears in the parameter  estimation for an ARMA model fitting, the applied
model must be different from a true (or proper) model, and then the model should be exchanged immediately.  
   Our main object for our researches is to know what kind of misspecification is fatal in the time series ARMA model
fitting. How many estimated  model  parameters  are there at most in the misspecified ARMA model fittings? In this
paper we shall employ an Exponential process (see Nakatuka [6]) which is quite different from ARMA process, and
we consider the problem for ARMA model fittings to this process. We shall derive a mathematical  form of the condi-
tional quasi-maximum likelihood function of the ARMA(1,1) model parameters when the sample size tends to infinity.
It is seen from the numerical analysis study that, similar to the MA(1) model fitting to AR(2) process, there exist two
MA(1) model parameters in the MA(1) model fitting to EX(2) process.
   It is supported by the computer software Mathematica V10.3 and its application Time Series Pack for Mathematica
([4]).

2. ARMA model and Exponential process
Let {Z(t)} be a weakly stationary process with EZ(t) = 0. {Z(t)} is said to satisfy an auto regressive moving average
model of order p and q (abbreviated to ARMA(p, q) model) if {Z(t)} is expressed as 

 1  a 1B  ...  ap Bp Z t   1  b1 B  ...  bq Bq e t, 2
where {e(t)}, t being an integer, consists of independently and identically distributed random variables with E[e(t)] =
0, Eet2 = Σ 2, the ap's and bq's are constants which are independent of t, and B is the usual back shift operator such
that B[e(t)] = e(t-1) and Bk[e(t)] = BBk1[e(t)]] for k =1,2,.. (see, for example, [2], [3]).  In this case we also say that
the process {Z(t)} is ARMA(p,q) process.
Let

ΦB  1  a 1B  ...  ap Bp  
k1

p 1  Φk B, 3

ΘB  1  b1 B  ...  bq B q  
k1

q 1  Θk B. 4

In our model  fitting,   it is  assumed  that  Φh  < 1,     Θk   1  for all  h = 1, 2, ,  p, and k = 1, 2, ,  q. Let    =
(Φ1, ..., Φp, Θ1, .., Θq) be a (p+q)-dimensional  unknown parameter,  and let {Fk()} be a sequence of functions of ,
which are defined in the following way. For t > 0,

e t  
k1

p 1  Φk B 
k1

q 1  Θk B1 Z t  
k1


Fk Bk Zt. 5

For  evaluating  the  asymptotic  properties  of  the  conditional  quasi-maximum  likelihood  estimators  of    when  the
sample size tends to infinity, we should attend to a function

Sp,q  Eet2
 12

12 k1
p 1  Φk exp2 iΩ 2

j1
q 1  Θ j exp2 iΩ 2

fZΩ Ω.
6

Furthermore, the value   which minimizes Sp,q with respect to  should be obtained (see Tanaka and Huzii [8] and
also Huzii [4]). The spectrum of an ARMA(p,q) process fZΩ is given by 
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fZΩ  Σ2

2 Π
Θei Ω2
Φei Ω2.

. 7
AR and MA spectra  are  special  cases  of  this  spectrum when Θ x  1 and Φx  1,  respectively.  Therefore if  the
process {Z(t)} is an ARMA(p,q) process and is correctly fitted by the ARMA(p,q) model, then we have Sp,q  Σ2

2 Π ,

which is a spectral density of a white noise process.
 Let {X(t)} be a weakly stationary Exponential process of order r, EX(r), and the spectral density fX Ω ; r is given by

fXΩ ; r  1
2 Π ExpΑ0  

k1

r Αk Cos kΩ . 8
(See Nakatuka [6]). For example, when r = 2, its spectral density function has the following graphs when {Α0, Α1, Α2}=
{0, 0.5, -1.0} and when {Α0, Α1, Α2}= {0, -0.1,0.7} shown in Figure 2. 
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Figure. 2.  Graphs of spectra of EX(2) processes

It is also seen that the auto-covariance function of the process EX(1) is CovXt, Xt  h  Iha, the modified Bessel
function of order h.
   When we consider an ARMA(p,q) model fitting to this Ex(r) process {X(t)}, Sp,q,r is expressed as

Sp,q,r  12
12 k1

p 1  Φk exp2 iΩ 2

j1
q 1  Θ j exp2 iΩ 2

fX Ω ; r Ω. 9
In this paper, we consider the case when an ARMA(1,1) model is fitted incorrectly to an EX(2) process {X(t)}; Here
we set the ARMA(1,1) model  parameters  (x, y) in stead of (Φ, Θ).   In this case, Sp,q,r  can be derived from (9),
ignoring the constant term Σ2

2 Π , as the following expression.

Proposition 1

S1,1,2x, y  S1,1,2x, y ; a, b 
 1

1  y2
2 x E1a, b  1  x2 E0a, b  2 

k1


yk x Ek1a, b  Ek1a, b  1  x2 Eka, b ,

10

where Eka, b  
j


I2 jka I jb, and Ika is the modified Bessel function of order k.

Remark:  If r = 1 (or b = 0), then  Eka, b = Ika for all k, and thus we can derive that, for an ARMA(1,1) model
fitting to EX(1) processes,
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S1,1,1x, y  S1,1,1x, y ; a 
2 x I1a  1  x2 I0a  2 k1

 yk x  Ik1a  Ik1a  1  x2 Ika
1  y2 .

11

For the EX(2) process {X(t)}, we should note that Cov(X(t), X(t+h)) =  Eha, b.
   The covariance function of the residuals {e(t)} of the ARMA(p,q) model fitting to the EX(r) process is defined by

Rp,q,rh ;   Eet et  h
 12

12
exp2 i hΩ k1

p 1  Φk exp2 iΩ 2

j1
q 1  Θ j exp2 iΩ 2

fZΩ Ω.
12

Remark.  When h = 0 in (13), Rp,q,rh ;   Sp,q,r.
   In the case when an ARMA(1,1) model is fitted incorrectly to an EX(2) process {X(t)}, the covariance function of
the residuals is evaluated by the following expression.

Proposition 2.

R1,1,2h ; x, y  R1,1,2h ; x, y ; a, b
 1  y2 1 x Eh1a, b  Eh1a, b  1  x2 Eha, b 


k1


yk x Ekh1a, b  Ekh1a, b  Ekh1a, b  Ekh1a, b 

1  x2Ekha, b  Ekha, b ,

where Eka, b  
j


I2 jka I jb, and Ika is the modified Bessel function of order k.

13

It is seen from (13) that  R1,1,20 ; x, y  S1,1,2x, y.
3. Numerical results

If we fit the ARMA(1,1) model to a EX(2) process, the local minimum of the function S1,1,2x, y  is
not  necessarily  one.  We  show  two  examples  having  two  locally  minimal  points  of  the  function
S1,1,2x, y.
Example 1. We consider the MA(1) model fitting to an EX(2) process whose parameters are a = 0, b = -1.5. It is seen
by Figure 3 that S0,1,20, y has two locally minimal  points at y=-0.55 and 0.55. Graphs of their spectral densities are
also shown in Figure.3. 
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   Figure 3.  Graphs of S0,1,20, y for an EX(2) process with a = 0 and b = -1.5 and spectra

Example 2. We consider the MA(1) model fitting to an EX(2) process whose parameters  are a = -0.1, b = 0.7. The
graph of the covariance function of the process is shown in Figure 4.  It is seen that S1,1,2x, y has two locally minimal
points, {0.7,-0.63} and {-0.81,0.74}. Their spectral densities are also shown in Figure.4.
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 Figure 4. Graphs of covariance function of EX(2) process with a = -0.1 and b = 0.7 and spectra , 

4. Conclusion 
   In this paper, we have considered the misspecified ARMA(1,1) model fitting to EX(2) processes. We have evaluated
the covariance function of the residuals {e(t)} of the ARMA(1,1) model fitting to the EX(2) process. Also, using these
results, we have illustrated the examples that the local minimum of the function for the residual variance S1,1,2x, y is
not necessarily one by the numerical  analysis study. We know that it will be related to critical point theory and the
behavior  of  degenerate  critical  points  of  the  function  of  two  variables  in  Catastrophe  theory,  considering  the
ARMA(1,1) quasi-likelihood function as a potential function with two external parameters a and b. On the misspeci-
fied MA(1) model fitting to AR(2) processes, it was already seen that the domain for AR(2) parameters on which the
MA(1) quasi-likelihood function has more than one local maximum points is related to a cusp catastrophe (see [7]).
Thus it will be a future work for us to investigate the conditions for EX(2) parameters on which ARMA(1,1) quasi-
likelihood function has more than one local maximum points in the stationary and invertible parameter space.
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