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Abstract

This paper explores a mathematical optimization approach to nonparametric item re-
sponse theory (NIRT). Specifically, we develop mathematical optimization models for esti-
mating nonparametric item characteristic curves and latent abilities of examinees simultane-
ously. These models maximize the log likelihood function under the monotone homogeneity
and double monotonicity constraints and are formulated as mixed integer nonlinear pro-
gramming problems. Since these problems are very hard to solve exactly, we devise heuristic
optimization algorithms to efficiently find a good-quality solution. Through the computa-
tional experiments, the effectiveness of our mathematical optimization models and heuristic
optimization algorithms are demonstrated by comparison to the common two-parameter lo-
gistic IRT model.
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1 Introduction

Item response theory (IRT) is a modern test theory for the design, analysis, and scoring of tests.

A key component of IRT is the item characteristic curve (ICC), which shows the relationship

between the examinee’s latent ability and the probability of correctly answering a question item.

ICCs of question items and the latent abilities of examinees are estimated from the item response

data of examinees. The aim of IRT is to investigate not the test score, but the latent (i.e., not

directly observable) ability of each examinee. Moreover, this methodology allows one to closely

examine item characteristics, such as the difficulty and discrimination. According to approaches

taken to estimating the ICCs, IRT models can be divided into two categories, i.e., parametric

item response theory (PIRT) and nonparametric item response theory (NIRT). PIRT models

typically force ICCs to be parametric functions (e.g., logistic curves or normal ogives). On the

other hand, this paper focuses on NIRT models, which do not assume any particular parametric

form for the ICCs.

NIRT has its origin in Meredith’s work [10] and Mokken scale analysis [11], and it has seen

steady development in both its theory and applications (see, e.g., [13, 19, 20, 21, 22]). The
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greatest benefit of NIRT models is their ability to estimate various forms of ICCs given only

mild assumptions. Indeed, it has been demonstrated, e.g., in [4, 5, 15], that PIRT models do not

always fit the data well. In this case, NIRT models, which provide a more flexible framework, are

particularly beneficial. They are also useful for determining whether PIRT model assumptions

are valid or not (see, e.g., [6]). However, greater flexibility of nonparametric ICCs sometimes

makes a model overfit the data. As pointed out by Molenaar [13], an estimation based on NIRT

models may consequently be unstable especially when there is not much item response data.

There are several methods of estimating nonparametric ICCs, e.g., kernel smoothing [3, 15],

isotonic regression [7], and B-spline models [5, 16]. The most commonly used approach is kernel

smoothing; however, they sometimes estimate ICCs that decrease with respect to the latent

ability. In other words, kernel smoothing dose not always preserve monotone homogeneity [10,

11], which is the most fundamental property required by ICCs. In contrast, isotonic regression [7]

and B-spline model [5] ensure that ICCs are nondecreasing. A number of studies have assessed

the goodness of fit of PIRT models by means of these estimation procedures for nonparametric

ICCs (see, e.g., [4, 8, 9, 23, 25]).

The ordered latent class models [1, 2, 24] estimate the nonparametric ICCs and the latent

classes of examinees simultaneously. Croon [1, 2] and van Onna [24] used the expectation-

maximization (EM) algorithm and Markov chain Monte Carlo (MCMC) method, respectively

in these models. On the other hand, the purpose of the present paper is to build a new compu-

tational framework for estimating the nonparametric ICCs and the latent abilities of examinees

simultaneously. To accomplish this, we provide a mathematical optimization approach. Mathe-

matical optimization models make it possible to place various restrictions on excessively flexible

ICCs. Accordingly, our model can incorporate two basic constraints on nonparametric ICCs, i.e.,

the monotone homogeneity constraint [10, 11] and the double monotonicity constraint [11, 12], as

in the ordered latent class models [1, 2, 24]. Moreover, we conducted computational experiments

to assess the effectiveness of our NIRT models in comparison with the common two-parameter

logistic IRT model.

Our contributions are summarized as follows:

• We formulate mathematical optimization models for NIRT as mixed integer nonlinear

programming (MINLP) problems. These formulations determine the nonparametric ICCs

and the latent abilities of examinees simultaneously under the required constraints.

• We devise heuristic optimization algorithms to efficiently find good-quality solutions to

NIRT models that are very hard to solve exactly. The computational results demonstrated

that the solutions provided by our algorithms were good enough to achieve positive results

for our models.

The rest of the paper is organized as follows: In Section 2, we explain nonparametric ICC

estimation and its basic assumptions. In Section 3, we present mathematical optimization
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models for NIRT. Section 4 is devoted to our heuristic optimization algorithm for solving the

NIRT model with the monotone homogeneity constraint. Computational results are reported in

Section 5. Finally, conclusions are presented in Section 6.

2 Nonparametric Item Characteristic Curve Estimation

Let us suppose that examinees i = 1, 2, . . . , I have taken a test consisting of dichotomously

scored question items j = 1, 2, . . . , J . More specifically, we are given the binary item response

data,

U = (ui,j ; i = 1, 2, . . . , I, j = 1, 2, . . . , J) ∈ {0, 1}I×J ,

where ui,j = 1 if examinee i gave a correct answer to question item j, and ui,j = 0 otherwise.

The item characteristic curves (ICCs) and the latent abilities of examinees are estimated from

this item response data.

This paper addresses nonparametric item response theory (NIRT) that is characterized by

a nonparametric ICC estimation. In the conventional way, the following two assumptions are

made throughout the paper:

Unidimensionality: the latent abilities of all examinees can be evaluated unidimensionally.

Local Independence: item responses are conditionally independent of each other given an indi-

vidual latent ability.

In addition, we shall evaluate the latent abilities of examinees on a discrete scale of t = 1, 2, . . . , T ,

which we call the ability class. To describe the nonparametric ICCs, we introduce the decision

variable,

X = (xj,t; j = 1, 2, . . . , J, t = 1, 2, . . . , T ) ∈ RJ×T ,

where xj,t is the probability of question item j being answered correctly by examinees of ability

class t. Figure 1 illustrates a nonparametric ICC represented as a piecewise linear function.

The most fundamental property required for ICCs is monotone homogeneity (MH) [10, 11].

This implies that all ICCs are nondecreasing with a latent ability. In other words, the probability

of a correct answer does not decrease with the ability class of the examinee. This property can

be expressed as the following constraints:

Monotone Homogeneity : 0 ≤ xj,1 ≤ xj,2 ≤ · · · ≤ xj,T ≤ 1 (∀j = 1, 2, . . . , J). (1)

An additional assumption of nonparametric ICCs is double monotonicity (DM) [11, 12].

This assumption implies that the ICC of one item does not intersect with the other. In other
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Figure 1: Parametric and Nonparametric Item Characteristic Curves

words, for all classes of examinees, the difficulties of two question items are never reversed. To

formulate a clear definition, we suppose that there is a permutation,

σ : {1, 2, . . . , J} → {1, 2, . . . , J},

such that σ(k) = j means that the k-th most difficult item is question item j. We refer to σ as

the difficulty ranking function. Accordingly, the DM constraints are expressed as follows:

Double Monotonicity : xσ(1),t ≤ xσ(2),t ≤ · · · ≤ xσ(J),t (∀t = 1, 2, . . . , T ). (2)

That is, for all classes of examinees, the probability of correctly answering a high-ranking item

is lower than that of correctly answering a low-ranking one.

3 Mathematical Optimization Models

This section presents mathematical optimization models for NIRT. We first formulate a log

likelihood function to be maximized. We then develop a monotone homogeneity model and a

double monotonicity model.

3.1 Log likelihood function

Let us introduce the decision variable to estimate the ability class of examinees,

Y = (yi,t; i = 1, 2, . . . , I, t = 1, 2, . . . , T ) ∈ RI×T ,
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where yi,t = 1 if the ability class of examinee i is t, and yi,t = 0 otherwise. Since only one ability

class should be assigned to each examinee, the following constraints must be satisfied,

T∑
t=1

yi,t = 1 (∀i = 1, 2, . . . , I), (3)

yi,t ∈ {0, 1} (∀i = 1, 2, . . . , I, ∀t = 1, 2, . . . , T ). (4)

Now, we can define a log likelihood function to be maximized. Given xj := (xj,1, xj,2, . . . , xj,T )

and yi := (yi,1, yi,2, . . . , yi,T ), we can see from (3) and (4) that the probability of having the re-

sponse ui,j ∈ {0, 1} becomes

Pr(ui,j | xj ,yi) =

T∑
t=1

yi,t(xj,t)
ui,j (1− xj,t)

1−ui,j .

Accordingly, under the local independence assumption, the probability of examinee i giving the

response ui := (ui,1, ui,2, . . . , ui,J) is

Pr(ui | X,yi) =
J∏

j=1

Pr(ui,j | xj ,yi).

Since the responses of different examinees are independent, the overall item response U occurs

with the probability,

Pr(U | X,Y ) =

I∏
i=1

Pr(ui | X,yi) =

I∏
i=1

J∏
j=1

(
T∑
t=1

yi,t(xj,t)
ui,j (1− xj,t)

1−ui,j

)
.

By treating X and Y as decision variables, the log likelihood function can be defined as follows:

ℓ(X,Y | U) = log Pr(U | X,Y ) =

I∑
i=1

J∑
j=1

log

(
T∑
t=1

yi,t(xj,t)
ui,j (1− xj,t)

1−ui,j

)
.

In view of constraints (3) and (4), the log likelihood function can be rewritten as follows:

ℓ(X,Y | U)
(3) (4)
=

I∑
i=1

J∑
j=1

T∑
t=1

yi,t log
(
(xj,t)

ui,j (1− xj,t)
1−ui,j

)

=
I∑

i=1

J∑
j=1

T∑
t=1

yi,t (ui,j log(xj,t) + (1− ui,j) log(1− xj,t)) . (5)

3.2 Monotone homogeneity model

The monotone homogeneity (MH) model estimates X and Y so that the log likelihood function,

ℓ(X,Y | U), is maximized under conditions (1), (3), and (4). Consequently, the MH model can
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be framed as a mixed integer nonlinear programming (MINLP) problem,

(MHM)

maximize
X,Y

I∑
i=1

J∑
j=1

T∑
t=1

yi,t (ui,j log(xj,t) + (1− ui,j) log(1− xj,t))

subject to 0 ≤ xj,1 ≤ xj,2 ≤ · · · ≤ xj,T ≤ 1 (∀j = 1, 2, . . . , J),
T∑
t=1

yi,t = 1 (∀i = 1, 2, . . . , I),

yi,t ∈ {0, 1} (∀i = 1, 2, . . . , I, ∀t = 1, 2, . . . , T ).

3.3 Double monotonicity model

Next, we deal with a mathematical optimization problem with double monotonicity (DM) con-

straints (2).

Let us recall that σ(k) = j means that the k-th most difficult item is question item j. In

what follows, we shall represent this difficulty ranking function with the permutation matrix,

Z = (zj,k; j = 1, 2, . . . , J, k = 1, 2, . . . , J) ∈ RJ×J , (6)

zj,k = 1 ⇐⇒ σ(k) = j. (7)

It follows from the definition that the permutation matrix satisfies

J∑
k=1

zj,k = 1 (∀j = 1, 2, . . . , J), (8)

J∑
j=1

zj,k = 1 (∀k = 1, 2, . . . , J), (9)

zj,k ∈ {0, 1} (∀j = 1, 2, . . . , J, ∀k = 1, 2, . . . , J). (10)

The optimization model presented below finds an appropriate difficulty ranking by treating Z

as a decision variable.

To estimate ICCs under the DM constraints, we further use a new decision variable,

W = (wk,t; k = 1, 2, . . . , J, t = 1, 2, . . . , T ) ∈ RJ×T ,

which represents the probability of the k-th most difficult item being answered correctly by

examinees of ability class t. The MH and DM constraints on W can be expressed as follows:

0 ≤ wk,1 ≤ wk,2 ≤ · · · ≤ wk,T ≤ 1 (∀k = 1, 2, . . . , J), (11)

w1,t ≤ w2,t ≤ · · · ≤ wJ,t (∀t = 1, 2, . . . , T ). (12)
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The associated log likelihood function becomes

ℓ(W ,Y ,Z | U)
(5)
=

I∑
i=1

J∑
k=1

T∑
t=1

yi,t
(
ui,σ(k) log(wk,t) + (1− ui,σ(k)) log(1− wk,t)

)

(7)
=

I∑
i=1

J∑
k=1

T∑
t=1

yi,t




J∑
j=1

zj,k (ui,j log(wk,t) + (1− ui,j) log(1− wk,t))




=

I∑
i=1

J∑
j=1

J∑
k=1

T∑
t=1

yi,tzj,k (ui,j log(wk,t) + (1− ui,j) log(1− wk,t)) .

We are now in a position to formulate the DM model, i.e., the problem of maximizing the log

likelihood function, ℓ(W ,Y ,Z | U), subject to constraints (3), (4) and (8)–(12). Accordingly,

the DM model can be cast as an MINLP problem,

(DMM)

maximize
W ,Y ,Z

I∑
i=1

J∑
j=1

J∑
k=1

T∑
t=1

yi,tzj,k (ui,j log(wk,t) + (1− ui,j) log(1− wk,t))

subject to 0 ≤ wk,1 ≤ wk,2 ≤ · · · ≤ wk,T ≤ 1 (∀k = 1, 2, . . . , J),

w1,t ≤ w2,t ≤ · · · ≤ wJ,t (∀t = 1, 2, . . . , T ),
J∑

k=1

zj,k = 1 (∀j = 1, 2, . . . , J),

J∑
j=1

zj,k = 1 (∀k = 1, 2, . . . , J),

zj,k ∈ {0, 1} (∀j = 1, 2, . . . , J, ∀k = 1, 2, . . . , J),
T∑
t=1

yi,t = 1 (∀i = 1, 2, . . . , I),

yi,t ∈ {0, 1} (∀i = 1, 2, . . . , I, ∀t = 1, 2, . . . , T ).

4 Heuristic Optimization Algorithm

The optimization models presented in Section 3 are mixed integer nonlinear programming

(MINLP) problems, which are very hard to solve exactly. Because of that, we decided to

develop heuristic optimization algorithms for efficiently computing good-quality solutions. An

algorithm for solving problem (MHM) is described in this section, and that for solving problem

(DMM) is described in Appendix.

We begin by giving an ability class to each examinee as an initial solution. To do this, one

may use the number of question items that each examinee answered correctly. We denote the

initial ability classes by

Ȳ = (ȳi,t; i = 1, 2, . . . , I, t = 1, 2, . . . , T ).
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Next, we solve problem (MHM) in which the decision variable Y is fixed to Ȳ . Since this

problem can be decomposed into ones of each ICC, we solve

(MHM(j | Ȳ ))
maximize

xj

I∑
i=1

T∑
t=1

ȳi,t (ui,j log(xj,t) + (1− ui,j) log(1− xj,t))

subject to 0 ≤ xj,1 ≤ xj,2 ≤ · · · ≤ xj,T ≤ 1,

for j = 1, 2, . . . , J . Since problem (MHM(j | Ȳ )) is a maximization of a concave function with

linear constraints, we can solve it exactly and efficiently with a standard nonlinear optimization

solver.

Let

X̄ = (x̄j,t; j = 1, 2, . . . , J, t = 1, 2, . . . , T )

be composed of optimal solutions to problems (MHM(j | Ȳ )) for j = 1, 2, . . . , J . Now, we

solve problem (MHM) in which the decision variable X is fixed to X̄. Similarly to the above

problems, this problem can be decomposed into ones of each examinee. Consequently, we solve

(MHM(i | X̄))

maximize
yi

J∑
j=1

T∑
t=1

yi,t (ui,j log(x̄j,t) + (1− ui,j) log(1− x̄j,t))

subject to
T∑
t=1

yi,t = 1,

yi,t ∈ {0, 1} (∀t = 1, 2, . . . , T ).

for i = 1, 2, . . . , I. To solve problem (MHM(i | X̄)), it is only necessary to select one ability

class t∗ such that the objective function is maximized, and set yi,t∗ = 1. In this manner, we

update Ȳ and return to the first step to find a better X̄.

By repeating this procedure, the log likelihood function, ℓ(X̄, Ȳ | U), monotonically in-

creases. We terminate this algorithm when the solution Ȳ stops changing. Our heuristic opti-

mization algorithm is summarized as follows:

Algorithm 1: Heuristic Optimization Algorithm for Solving Problem (MHM)

Step 0. (Initialization) Set the initial ability classes, Ȳ .

Step 1. (ICC Estimation) Solve problems (MHM(j | Ȳ )) for all j = 1, 2, ..., J . Let X̄ be an

optimal solution.

Step 2. (Ability Estimation) Solve problems (MHM(i | X̄)) for all i = 1, 2, ..., I. Let Ȳ be an

optimal solution.

Step 3. (Termination Condition) If Ȳ remains the same as the previous one, terminate the

algorithm with the solution (X̄, Ȳ ). Otherwise, return to Step 1.
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5 Computational Experiments

The computational results reported in this section compare the effectiveness of our NIRT models

with that of the common PIRT model.

5.1 Experimental design

The number of examinees, I, was set to 1000 and 3000, and the number of question items, J ,

was set to 30 and 60, similarly to Nozawa [14]. Since the ordinal scale of neural test theory

grades examinees into about ten classes (see, e.g., [17, 18]), the number of ability classes, T , was

set to ten.

We evaluated the IRT models through the process illustrated in Figure 2.

Figure 2: Process of Model Evaluation

In Step 1, we randomly generated θi from a standard normal distribution for i = 1, 2, . . . , I.

Next, we converted θi into an ability class t in view of the second column “range of θ” of Table 1.

For instance, if 0 ≤ θi < 0.23, we gave a true ability class ttruei = 6 to examinee i. The ranges

of θ were determined so that each ability class is assigned to approximately the same number of

examinees.

To define the ICCs of question items j = 1, 2, . . . , J , we used two types of function. One was

the two-parameter logistic (2PL) model,

p2PLj (θ) =
1

1 + exp(−1.7aj(θ − bj))
, (13)
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Table 1: Relationship between the Ability Class t and the Continuous Value θ

t range of θ median of θ

1 [−∞,−1.29) −1.73

2 [−1.29,−0.81) −1.02

3 [−0.81,−0.49) −0.64

4 [−0.49,−0.23) −0.36

5 [−0.23, 0) −0.12

6 [0, 0.23) 0.12

7 [0.23, 0.49) 0.36

8 [0.49, 0.81) 0.64

9 [0.81, 1.29) 1.02

10 [1.29,∞) 1.73

where aj and bj are parameters of discrimination and difficulty that are uniformly drawn from

the respective intervals [0.5, 2.0] and [−1.5, 1.5]. Similarly to Nozawa [14], the other was the

extended three-parameter normal ogive (3PN) model of order two,

p3PNj (θ) = Φ(aj,2(θ − bj)
3 +

√
3aj,1aj,2(θ − bj)

2 + aj,1(θ − bj)), (14)

where Φ is the normal ogive; aj,1 and aj,2 are shape parameters; and bj is a parameter of

difficulty. These parameters, aj,1, aj,2 and bj , are uniformly drawn from the intervals [0.4, 0.8],

[0.1, 0.5], and [−0.5, 0.5]. This model defines ICCs based on the multimodal distribution of the

examinees’ abilities. Although two-parameter logistic IRT models can accurately estimate ICCs

defined by the 2PL model, they have difficulty in fitting ICCs defined by the 3PN model.

The third column “median of θ” of Table 1 shows the median of the corresponding range

of θ. When the true ICC of question item j was based on the 2PL model (13), it was defined

as xtruej,1 = p2PLj (−1.73), xtruej,2 = p2PLj (−1.02), . . . , xtruej,10 = p2PLj (1.73) in correspondence with the

median values of Table 1. The true ICCs based on the 3PN model (14) were defined in the same

way. We denote by ρ the percentage of ICCs defined by the 3PN model, and we set ρ to 0%,

20% and 50% in the manner of Nozawa [14]. For instance, when J = 60 and ρ = 20%, true

ICCs of 12 question items were created by the 3PN model.

In Step 2, item response data, U , was randomly generated with a binomial distribution based

on the data from Step 1. Precisely, examinees of ability class t answered item j correctly with

probability xtruej,t .

In Step 3, ability classes and ICCs were estimated using the following IRT models from the

item response data U ,
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2PLM: two-parameter logistic IRT model,

MHM: monotone homogeneity model (MHM),

DMM: double monotonicity model (DMM).

We used EasyEstimation Ver. 1.4.3 (http://irtanalysis.main.jp/english), a program for

analyzing IRT models, to perform computations of 2PLMs. For comparison, a continuous abil-

ity θi estimated by 2PLM was converted into an ability class t in view of the second col-

umn of Table 1. We used Algorithm 1 to solve optimization model (MHM) and a similar

heuristic optimization algorithm (see Appendix) to solve optimization model (DMM). MAT-

LAB R2011b (http://www.mathworks.com/products/matlab) and a MATLAB optimization

toolbox, fmincon, were used to implement these heuristic optimization algorithms. In these algo-

rithms, examinees were equally divided into ten groups based on the number of correct answers,

and the initial Ȳ was set by assigning one ability class to each group. The heuristic optimization

algorithms employed the following MH constraints:

0.01 ≤ xj,1 ≤ xj,2 ≤ · · · ≤ xj,T ≤ 0.99 (∀j = 1, 2, . . . , J),

0.01 ≤ wk,1 ≤ wk,2 ≤ · · · ≤ wk,T ≤ 0.99 (∀k = 1, 2, . . . , J)

to avoid numerical instabilities caused by log( · ) going to −∞.

In Step 4, we evaluated the estimation accuracy of each IRT model by comparing the data

generated in Step 1 with the estimates obtained in Step 3. We took the root mean square error

(RMSE) to be the measure for the evaluation. The RMSE of the ability classes was calculated

as follows:

RMSE of ability classes =

�����
I∑

i=1
(ttruei − t̂i)2

I
,

where t̂i is the estimated ability class. The RMSE of ICCs was calculated as follows:

RMSE of ICCs =

�����
J∑

j=1

T∑
t=1

(xtruej,t − x̂j,t)2

JT
,

where x̂j,t is the estimated probability of a correct answer. We repeated Steps 1 to 4 ten times

and show the average RMSE in what follows.

5.2 Computational results

Tables 2 and 3 show the RMSEs of the ability classes and ICCs for the 12 experimental con-

ditions. Note that the minimum RMSE for each experimental condition is bold-faced in the

tables.
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Table 2: Root Mean Square Error of Ability Classes

I J ρ 2PLM MHM DMM

1000 30 0% 0.796 0.883 0.795

20% 0.826 0.905 0.835

50% 1.009 1.035 0.951

60 0% 0.619 0.610 0.580

20% 0.680 0.652 0.630

50% 0.826 0.680 0.681

3000 30 0% 0.787 0.901 0.784

20% 0.837 0.950 0.825

50% 0.942 0.979 0.898

60 0% 0.630 0.627 0.585

20% 0.668 0.629 0.609

50% 0.834 0.705 0.676

Table 3: Root Mean Square Error of Item Characteristic Curves

I J ρ 2PLM MHM DMM

1000 30 0% 0.025 0.068 0.047

20% 0.049 0.070 0.059

50% 0.079 0.073 0.054

60 0% 0.022 0.047 0.048

20% 0.051 0.048 0.063

50% 0.080 0.050 0.063

3000 30 0% 0.015 0.066 0.042

20% 0.046 0.068 0.055

50% 0.074 0.067 0.060

60 0% 0.016 0.038 0.046

20% 0.047 0.038 0.059

50% 0.078 0.041 0.055
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We can see from Table 2 that when the number of question items was 30, the RMSE of the

ability classes obtained by MHM was larger than that of 2PLM. When the number of question

items was 60, on the other hand, MHM had a smaller RMSE than 2PLM did, and the difference

got larger as the percentage of 3PN ICCs increased. As for the RMSE of the ICCs in Table 3,

when the percentage of 3PN ICCs was 0%, MHM was always worse than 2PLM. Conversely,

when the percentage of 3PN ICCs was 50%, MHM was always better than 2PLM. MHM has

the potential of fitting ICCs based on the 3PN model (14) well, but its estimation results may

be unstable when there is not much item response data. Thus, when the number of question

items and percentage of 3PN ICCs were sufficiently large, nonparametric MHM outperformed

parametric 2PLM.

The estimation accuracy of MHM was not always high, mostly because of overfitting. In

contrast, DMM attained the minimum RMSE of the ability classes for 10 experimental conditions

in Table 2. However, as shown in Table 3, it failed to estimate the ICCs accurately. Indeed,

when the number of question items was 60, DMM had a larger RMSE for the ICCs than MHM

did. This is because the true ICCs did not satisfy the DM constraints, and consequently, DMM

had difficulty estimating them.

Figures 3 and 4 show illustrative examples of estimated ICCs together with the true ICCs

for (I, J, ρ) = (3000, 60, 50%). The true ICC was defined by the 3PN model in Figure 3 and

by the 2PL model in Figure 4. It is clear from Figure 3 that the ICC estimated by 2PLM did

not fit the true 3PN-based ICC well because 2PLM can only create a logistic curve. On the

other hand, the other nonparametric IRT models estimated relatively accurate shapes of the

true ICC. Figure 4 reveals that the ICC estimated by DMM was very different from the true

2PL-based one because the DM constraints are too tight. Additionally, we should notice that

the ICC estimated by MHM moved away from the true ICC for the ability classes t = 2, 3, 5 and

6. Meanwhile, it is reasonable that 2PLM estimated the true 2PL-based ICC very accurately.

6 Conclusions

This paper described a mathematical optimization approach to nonparametric item response

theory (NIRT). Specifically, to estimate nonparametric item characteristic curves (ICCs) and

latent abilities of examinees simultaneously, we developed mathematical optimization models

and heuristic optimization algorithms. The computational results demonstrated that NIRT

models outperformed the common two-parameter logistic IRT model especially when many

ICCs were based on a multimodal ability distribution.

The contributions of this research are twofold. First, we formulated mathematical opti-

mization models to determine the nonparametric ICCs and the latent abilities of examinees

simultaneously under the monotone homogeneity and double monotonicity constraints. Second,

we developed heuristic optimization algorithms to efficiently find good-quality solutions to the
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Figure 3: Estimated Item Characteristic Curves Together with the True 3PN (Extended Three-
Parameter Normal Ogive) One

Figure 4: Estimated Item Characteristic Curves Together with the True 2PL (Two-Parameter
Logistic) One

NIRT models. By means of these algorithms, we verified the effectiveness of our mathematical

optimization models for NIRT.

This study illustrates the fact that the mathematical optimization approach can be a power-

ful tool for nonparametric ICC estimation. Mathematical optimization models make it possible

to estimate ICCs under the various effective constraints. Indeed, the double monotonicity con-

straint is useful for improving the estimation accuracy of the latent abilities.
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A future direction of study will be to extend our formulation to polytomous NIRT models

(see, e.g., [20]). In addition, there is room for further research into algorithms especially for

solving the double monotonicity model.
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Appendix

This appendix describes a heuristic optimization algorithm for solving the optimization model

(DMM). Step 0 and Step 1 are the same as those of Algorithm 1. In Step 2, we determine

a difficulty ranking of question items on the basis of the estimated ICCs. Specifically, for

all question items j = 1, 2, . . . , J , we calculate the sum of probabilities of the correct answer,

x̄sumj =
∑T

t=1 x̄j,t. If x̄
sum
j is small, the question item j is difficult to answer correctly; accordingly,

we set a difficulty ranking such that if x̄sumj is the k-th smallest of all question items, then z̄j,k = 1.

Next, we estimate the ICCs again by solving the following optimization problem under the DM

constraints given the difficulty ranking,

(DMM(Ȳ , Z̄))

maximize
W

I∑
i=1

J∑
j=1

J∑
k=1

T∑
t=1

ȳi,tz̄j,k (ui,j log(wk,t) + (1− ui,j) log(1− wk,t))

subject to 0 ≤ wk,1 ≤ wk,2 ≤ · · · ≤ wk,T ≤ 1 (∀k = 1, 2, . . . , J),

w1,t ≤ w2,t ≤ · · · ≤ wJ,t (∀t = 1, 2, . . . , T ).

The next step is similar to Step 2 of Algorithm 1. We solve the following optimization

problems to determine the ability classes of the examinees,

(DMM(i | W̄ , Z̄))

maximize
yi

J∑
j=1

J∑
k=1

T∑
t=1

yi,tz̄j,k (ui,j log(w̄k,t) + (1− ui,j) log(1− w̄k,t))

subject to

T∑
t=1

yi,t = 1,

yi,t ∈ {0, 1} (∀t = 1, 2, . . . , T ),

for i = 1, 2, ..., I. These problems are easily solved similarly to (MHM(i | X̄)).

Finally, we obtain the solution (W̄ , Ȳ , Z̄). We do not return to Step 1 because our prelim-

inary experiment showed that such a repetition did not improve a solution significantly. This
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heuristic optimization algorithm is summarized as follows:

Algorithm 2: Heuristic Optimization Algorithm for Solving Problem (DMM)

Step 0. (Initialization) Set the initial ability classes, Ȳ .

Step 1. (Tentative ICC Estimation) Solve problems (MHM(j | Ȳ )) for all j = 1, 2, ..., J . Let X̄

be an optimal solution.

Step 2. (Difficulty Ranking Estimation) Set a difficulty ranking, Z̄, such that if x̄sumj =
∑T

t=1 x̄j,t

is the k-th smallest of all question items, then z̄j,k = 1.

Step 3. (ICC Estimation with DM Constraints) Solve problem (DMM(Ȳ , Z̄)). Let W̄ be an

optimal solution.

Step 4. (Ability Estimation) Solve problems (DMM(i | W̄ , Z̄)) for all i = 1, 2, ..., I. Let Ȳ be

an optimal solution.

Step 5. (Termination) Terminate the algorithm with the solution (W̄ , Ȳ , Z̄).
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