
1

On Misspecified ARMA Model Fittings to Some 
Stationary Processes

Minoru Tanaka
School of Network and Information, Senshu University, 

2-1-1, Higasimita, Tama-ku, Kawasaki,
 Kanagawa 214-8580, Japan

  Abstract
   This  paper  gives  discussions  on  (i)  a  misspecified ARMA(1,1)  model  fitting to  MA(2)  processes,  and
also on (ii) a misspecified MA(2) model fitting to AR(2) processes. They are mainly concerned a problem
for finding a number of locally maximal points of the conditional likelihood function of the models when
the sample size tends to infinity. It is detected in the case (i) that the general conditions for MA(2) parame-
ters  on  which  the  conditional  likelihood  function  of  the  ARMA(1,1)  model   has  more  than  one  locally
maximal  points  in  the  stationary  and  invertible  parameter  space.  Also  in  the  case  (ii)  it  is  seen  that  the
MA(2) model  has  three locally  maximal points  in  the invertible  parameter space if  the model is  fitted to
special AR(2) processes. These results are inspected by simulation.

Key words: ARMA process; ARMA(1,1) and MA(2) model fitting; conditional likelihood function; locally
minimal points;  misspecification.

1. Introduction
   When applying a model to a time series, we assume a suitable model since we do not know a true model.
If  it  is  judged  that  the  data  conforms  to  the  model,  we  shall  analyze  specification  of  a  spectrum,  future
prediction, etc. based on the model. Although many methods related with model selection are studied, we
here do not  take up the subject  of model selection.  When attention is seldom paid to the specification of
the model which we assume first,  isn’t  there  any experience in which parameter estimation of the model
did not work? When estimating a parameter with a conditional maximum likelihood method (least-squares
method), we experience well  that  a model changes by an initial  value,  or not being completed as a fixed
value  for  the  parameter  of  a  model.  By  the  way,  it  is  well  known  that  if  we  fit  an  ARMA(p+ g,  q+ g)
model to the data, there is no unique solution and the maximum likelihood method can show strong depen-
dence  on  the  initial  conditions,  where  a  series  of  data  is  from  an  ARMA(p,  q)  process  (see  [7]).  The
problem which we deal with here is not a problem of such an exaggerated fitting model. It is a problem in
case the model to fit differs from a true model. If the order of an ARMA model is enlarged enough, it may
be not  taking  into  consideration.  But  if  we have  a  small  sample,  it  will  be  the  problem which  may fully
arise.  The  purpose  of  our  research  is  to  investigate  on  what  kind  of  conditions  such  a  situation  arises.
Since our research has just still started, we will treat the ARMA(1,1) model and also MA(2) model as an
early stage.
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   This paper is a sequel of the paper [11] last year. It relates to incorrect identification of an ARMA(1,1)
model.  We  treated  applying  this  model  to  the  time  series  which  follows  AR(2)  process  incorrectly.  We
searched for the conditions of the coefficient parameters of AR(2) process in which two or more maximum
points exist in quest  of a conditional  likelihood function paying attention to the number of the maximum
points there. The following graphs of the domain is obtained. 

 Figure 1.  The region of an ARMA(1,1) parameters where more than 
one locally maximum points exist.  

    This is also a sequel of the paper "On a moving average time series model fitting" contributed with Mr.
Kenji Aoki in 1991 ([12]). It is known that when we fit an MA(1) model to some special time series data
which  does  not  follow  MA(1)  process,  the  MA(1)  parameter  does  not  have  an  unique  Gaussian  quasi-
maximum likelihood estimator. Tanaka and Huzii [13] have given the conditions of AR(2) parameters on
which  the  MA(1)  quasi-likelihood  function  has  more  than  one  local  maximal  points  in  the  invertible
parameter space (-1,1).  Furthermore, Tanaka and Aoki  [12] gave the region for the AR(2) parameters on
which  the  MA(1)  quasi-likelihood  function  has  more  than  one  local  maximal  points  in  the  parameter
space. In this case, maximizing the likelihood function is equivalent to minimizing the following function
S(x;  a, b) when the data length is large (see [13]). Here x  is  an MA(1) parameter and a  and b  are AR(2)
parameters.

               Sx; a, b = 1+b-a 1-b x-b 1+b x2

1-b 1-a2+2 b+b2 1-x2 1+a x+b x2 .   (1.1)

From Tanaka and Huzii [10], we have two minimal points of the function S(x;a,b) = S(x), say. For exam-
ple,  in  the  case  of  an  AR(2)  process  with  a  =  -0.1,  b  =  0.8,  the  function  S(x)  has  a  graph  shown  in  the
following figure. In order to have the conditions on which the function has two local minimal points in the
parameter space,  we should  consider  the  differentiation  DS(x) = 0.  And we specified the  case where  the
solution of the equation DS(x) = 0 changed from three to two. That is, the value of the resultant ([5]) was
able to formalize the contour  line for zero (the bifurcation set).  We set the domain D1  with a deep color
surrounded with the curve of the shape of a wedge given in the upper  part  of Fig.  2.  Its  boundary  is  the
bifurcation set. It will be seen that the function S(x;a,b) is locally a cusp.
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                Figure 2. Bifurcation set and the domain for MA(1) model fitting to AR(2) process.

The  function  S(x)  has  the  two  minimum points  separated  by  a  maximum within  D1,  whereas  outside  it
S(x) has a single minimum, which was given by Prof. Aoki using the concept of the cusp of Catastrophe
theory with a potential S(x). It is also seen that the two minimum points are put together and S(x) has only
one minimum point  at  the tip of the wedge (refer to information science research  [11], and also [5] and
[10] for details). 
   In  this  paper,  we  also  consider  the  ARMA(1,1)  model  fitting  to  MA(2)  process  and  study  a  problem
similar to the ARMA(1,1) model fitting to AR(2) processes, and also consider an MA(2) model fitting to
AR(2) processes.

2. On misspecified ARMA(1,1) model fitting to an MA(2) process
2.1 Definitions and Notations
   Let {Z(t)} be a weakly stationary process with E[Z(t)] = 0. {Z(t)} is said to satisfy a autore-
gressive moving average model of order p and q ( ARMA(p, q) model ) if {Z(t)} is expressed
as

         ( 1- a 1B- ...- ap Bp) Z(t) = ( 1+ b1 B+ ...+ bq Bq) e(t), (2.1)

where  {e(t)},  t  being  an  integer,  consists  of  independently  and  identically  distributed  random  variables
with  E[e(t)]  =  0,  Eet2  =  s2,  the  ap's  and  bq's  are  constants  which  are  independent  of  t,  and  B  is  the
usual backshift operator such that B[e(t)] = e(t-1) and Bk[e(t)] = BBk-1et for k =1,2,.. (see, for exam-
ple, [3], [4]).
Let

             fB = 1- a 1B- ...- ap Bp = 
k=1

p 1-fk B, (2.2)

  qB = 1+ b1 B+ ...+ bq B q = 
k=1

q 1- qk B. (2.3)
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In our model fitting,  it is assumed that  fh < 1,    qk § 1 for all h = 1, 2,∙∙ ∙, p, and k = 1, 2,∙∙ ∙, q. Let Q =
(f1, ..., fp, q1,  ..·,  qq)  be  a  (p+q)-dimensional  unknown  parameter,  and  let  {Fk(Q)}  be  a  sequence of
functions of Q, which are defined in the following way. For t > 0,

           e(t) = {
k=1

p 1-fk B  
k=1

q 1- qk B-1}Z(t) = k=1
¶ FkQ Bk Zt.            (2.4)

For  evaluating  the  asymptotic  properties  of  the  conditional  quasi-maximum  likelihood  estimators  of  Q
when the sample size tends to infinity, we should attend to a function

           Sp,qQ = Eet2

= -12
12 k=1

p 1-fk exp-2 þiw 2

j=1
q 1-q j exp-2 þiw 2 fZw „w.

(2.5)

The value Q
`

 which minimizes Sp,qQ with respect to Q should be obtained (see Tanaka and Huzii [10] and
also Huzii [5]). The spectrum of an ARMA(p,q) process, fZw, is given by 

fZw = s2

2 p
qe-iw2
fe-iw2. .  (2.6)

AR and MA spectra are special cases of this spectrum when qx = 1 and fx = 1, respectively. Hence if
the  process  {Z(t)}  is  an  ARMA(p,q)  process  and  is  correctly  fitted  by  the  ARMA(p,q)  model,  then  we
have Sp,qQ = s2

2 p , which is a spectral density of a white noise process.

   Let {X(t)} be a weakly stationary process with mean E[X(t)] = 0, known variance EX t2 =sX
2  and

spectral density fX w. When we consider an ARMA(p,q) model fitting to this process {X(t)}, then Sp,qQ
is expressed as

              Sp,qQ = -12
12 k=1

p 1-fk exp-2 þiw 2

j=1
q 1-q j exp-2 þiw 2 fX w „w. (2.7)

   In  this  paper,  consideration  is  given to  the case when an ARMA(1,1)  model is  fitted incorrectly  to  an
MA(2) process {X(t)}; X(t) = (1+ b1 B+ b2 B2) e(t). Here we set the ARMA(1,1) model parameters (x, y)
in stead of (f,  q).  In this case,  Sp,qQ  can be derived from (2.7),  ignoring the constant term s

2

2 p  which is
known, as

S11x, y = S1,1x, y b1, b2
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=
1

1-y2 1 + b1
2 - 2 y2 b2 - 2 x2 y2 b2 - 2 x y3 b2 + b2

2 + 2 x -b1 + b1 b2 +
2 y -b1 + b1 b2 2 x2 y -b1 + b1 b2 + 2 x y2 -b1 + b1 b2 + x2 1 + b1

2 + b2
2 + 2 x y 1 + b1

2 - b2 + b2
2

(2.8)
If we fit the ARMA(1,1) model to a special MA(2) process, the function S11x, y has two locally minimal
points.  For  an  example  of  the  MA(2)  process  with  b1  =  0.0,  b2  =  0.6,  we  have  the  following  graph of
S11x, y on the stationary and invertible space of (x, y).

Figure 3. A crosssection of S11x, y with b1 = 0.0, b2 = 0.6.

The problem which we consider is investigating the relation between the parameter of the original MA(2)
process  and  the  number  of  the  locally  minimal  point  of  the  conditional  likelihood  function  S11x, y.
Moreover, it is knowing at what rate it happening. 
   In  order  to  investigate  the  minimal point  of  the  function  S11x, y,  it  is  first  necessary  to  consider  the
admissible parameter space (W2) of MA(2) process with parameters b1 and b2, where 

         W2 = {(b1,b2); 0§ (b2+b1+1)(b2+b1-1), -2§ b1 § 2, -1§ b2§ 1}.  (2.9)

The locally minimal and maximal points satisfy simultaneously the following two equations, 

∑ S11x, y
∑x

= 0, 2.10
∑ S11x, y

∑y
= 0. 2.11

We shall solve the equations as following. The equation (2.10) is equivalent to 

-x - y + b1 + 2 x y b1 + y2 b1 - x b1
2 - y b1

2 + y b2 + 2 x y2 b2 + y3 b2 - b1 b2 - 2 x y b1 b2 - y2 b1 b2 - x b2
2 - y b2

2 = 0.

2.12
Then we have 
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x = -y + b1 + y2 b1 - y b1
2 + y b2 + y3 b2 - b1 b2 - y2 b1 b2 - y b2

2 
1 - 2 y b1 + b1

2 - 2 y2 b2 + 2 y b1 b2 + b2
2. 2.13

Also the equation (2.11) is equivalent to the following equation,

x+ y+ x2 y+ x y2- b1- x2 b1- 4 x y b1- y2 b1- x2 y2 b1+ x b12+
y b12+ x2 y b12+ x y2 b12- x b2- 2 y b2- 2 x2 y b2- 4 x y2 b2+ x y4 b2+ b1 b2+

x2 b1 b2 + 4 x y b1 b2 + y2 b1 b2 + x2 y2 b1 b2 + x b22 + y b22 + x2 y b22 + x y2 b22 = 0

2.14
From (2.12) and (2.13), we have

-b1 - y b2 + b1 b2 -y b1 + b1
2 + y2 b1

2 - y b1
3 + b2 - 2 y2 b2 + 2 y b1 b2 + 3 y3 b1 b2 -

b1
2 b2 - 4 y2 b1

2 b2 + y b1
3 b2 + 2 y4 b2

2 - 2 y b1 b2
2 - 3 y3 b1 b2

2 + b1
2 b2

2 + y2 b1
2 b2

2 + b2
3 - 2 y2 b2

3 + y b1 b2
3 = 0

(2.15)
In  general,  it  is  very  difficult  to  solve  the  equation,  but  to  know  the  number  of  the  real  solutions  it  is
sufficient to consider the resultant of the polynomial 

f y = -b1 - y b2 + b1 b2
-y b1 + b1

2 + y2 b1
2 - y b1

3 + b2 - 2 y2 b2 + 2 y b1 b2 + 3 y3 b1 b2 - b1
2 b2 - 4 y2 b1

2 b2 + y b1
3 b2 + 2 y4 b2

2 - 2 y b1 b2
2 - 3 y3 b1 b2

2 +

b1
2 b2

2 + y2 b1
2 b2

2 + b2
3 - 2 y2 b2

3 + y b1 b2
3 . 2.16

Since the derivative of the function f(y)  is given by
∑

∑ y
f y =

b1
2 - 2 y b1

3 + b1
4 + 6 y b1 b2 - 4 b1

2 b2 - 12 y2 b1
2 b2 + 12 y b1

3 b2 - 2 b1
4 b2 - b2

2 + 6 y2 b2
2 - 8 y b1 b2

2 - 20 y3 b1 b2
2 + 5 b1

2 b2
2 + 30 y2 b1

2 b2
2 -

12 y b1
3 b2

2 + b1
4 b2

2 - 10 y4 b2
3 + 8 y b1 b2

3 + 20 y3 b1 b2
3 - 4 b1

2 b2
3 - 12 y2 b1

2 b2
3 + 2 y b1

3 b2
3 - b2

4 + 6 y2 b2
4 - 6 y b1 b2

4 + b1
2 b2

4,

2.17
the resultant of the two polynomials (2.16) and (2.17) on y is given as 

R b1, b2  =
-1024 1 + b1 - b22 b2

11 -1 + b1 + b22 -b1 - b2 + b1 b22 -b1 + b2 + b1 b22 1 + b1
2 + b2

22

b1
8 + 12 b1

6 b2 + 4 b1
8 b2 + 48 b1

4 b2
2 + 50 b1

6 b2
2 + 4 b1

8 b2
2 + 64 b1

2 b2
3 + 240 b1

4 b2
3 + 84 b1

6 b2
3 - 4 b1

8 b2
3 + 544 b1

2 b2
4 +

357 b1
4 b2

4 + 78 b1
6 b2

4 - 10 b1
8 b2

4 + 512 b2
5 + 448 b1

2 b2
5 + 636 b1

4 b2
5 + 64 b1

6 b2
5 - 4 b1

8 b2
5 + 1632 b1

2 b2
6 + 510 b1

4 b2
6 +

78 b1
6 b2

6 + 4 b1
8 b2

6 + 1536 b2
7 + 768 b1

2 b2
7 + 636 b1

4 b2
7 + 84 b1

6 b2
7 + 4 b1

8 b2
7 + 1632 b1

2 b2
8 + 357 b1

4 b2
8 +

50 b1
6 b2

8 + b1
8 b2

8 + 1536 b2
9 + 448 b1

2 b2
9 + 240 b1

4 b2
9 + 12 b1

6 b2
9 + 544 b1

2 b2
10 + 48 b1

4 b2
10 + 512 b2

11 + 64 b1
2 b2

11.

(2.18) 
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From the Catastrophe theory,  a number of locally minimum points  of S11x, y  on W2  for MA(2) process
with parameters (b1, b2) is explained by considering a change for the sign of the resultant R(a,b). If the two
polynomials (2.16) and (2.17) have common zeros, the resultant must be vanished. Hence we consider the
conditions  for  R(b1,  b2)= 0  on  W2.  Since  the  polynomial  1+ b1

2 + b2
22  in  (2.18)  is  always  positive  on

W2, it is sufficient to consider the zeros of  the polynomial such that

G1 b1, b2 = 1 + b1 - b2 -1 + b1 + b2 -b1 - b2 + b1 b2 -b1 + b2 + b1 b2
 b1

8 + 12 b1
6 b2 + 4 b1

8 b2 + 48 b1
4 b2

2 + 50 b1
6 b2

2 + 4 b1
8 b2

2 + 64 b1
2 b2

3 + 240 b1
4 b2

3 + 84 b1
6 b2

3 -

4 b1
8 b2

3 + 544 b1
2 b2

4 + 357 b1
4 b2

4 + 78 b1
6 b2

4 - 10 b1
8 b2

4 + 512 b2
5 + 448 b1

2 b2
5 + 636 b1

4 b2
5 +

64 b1
6 b2

5 - 4 b1
8 b2

5 + 1632 b1
2 b2

6 + 510 b1
4 b2

6 + 78 b1
6 b2

6 + 4 b1
8 b2

6 + 1536 b2
7 + 768 b1

2 b2
7 +

636 b1
4 b2

7 + 84 b1
6 b2

7 + 4 b1
8 b2

7 + 1632 b1
2 b2

8 + 357 b1
4 b2

8 + 50 b1
6 b2

8 + b1
8 b2

8 + 1536 b2
9 +

448 b1
2 b2

9 + 240 b1
4 b2

9 + 12 b1
6 b2

9 + 544 b1
2 b2

10 + 48 b1
4 b2

10 + 512 b2
11 + 64 b1

2 b2
11.

2.19
Then we have the following graph for a contour of G1 (b1, b2) = 0 on W2.

Figure 4.  A contour line of G1(b1, b2) = 0 on W2.

It  turns  out  that  the function S11x, y  has  the two minimum points  in  a  domain (D2)  of  a  portion  with a
deep color surrounded with the curve in Figure.5, where

D2 =  b1, b2 œ W2 ; 1+ b1 - b2 -1+ b1 + b2 -b1 - b2 + b1 b2 -b1 + b2 + b1 b2 < 0  .

(2.20)Also we define the (bifurcation) set

B2 =  b1, b2 œ W2 ; 1+ b1 - b2 -1+ b1 + b2 -b1 - b2 + b1 b2 -b1 + b2 + b1 b2 = 0  .

(2.21) 

   When numerical integration is performed by using Mathematica (Ver.7), it turns out that the area of this
domain D2 is about 2.490 square, and the rate to the parameter space of a lower triangle is 62.3% exactly.
This means that if we incorrectly fit the ARMA(1,1) model to a series of an MA(2) process, then there are
62.3% probability for existing two locally maximum likelihood estimators on the stationary and invertible
parameter space.
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Figure 5.  The domain D2 in  W2. 

   We next determine the property of S11x, y  at every point in D2  by considering only one point within
each of the domains.

2.2.  Illustrations and Simulation study
  2.2.1. Illustrations
   By varying the MA(2) parameters, b1 and b2, continuously and staying inside of D2, for example, going
from position P1 to P2 in Fig.6, the system remains in a stable equilibrium that is the function S11x, y has
two  minima.  However,  if  a  and  b  are  changed  so  that  the  bifurcation  set  B2  is  transversed,  something
unusual  happens.  To  see  this,  start  in  position  P2  of  Fig.6,  where  the  system is  in  a  stable  equilibrium.
Moving  parallel  to  the  b1-axis  toward  position  P3,  when  the  position  is  reached,  the  system  becomes
unstable the and the function S11x, y has only one minima. There the system is stable again and remains
so  while  moving  onward  to  position  P4.  In  position  P5  inside  of  D2,  it  is  also  seen  that  the  function
S11x, y has two minima.

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

b1

b 2

P1 P2 P3 P4 P5

P8

P6

P7

Figure 6.  Selected MA(2)-parameters (b1, b2) of positions P1- P8.

[1] position P1 ; b1= 0.0 and b2 = 0.5. In this case, S11x, y has two locally minimum points on the parame-
ter space W 2 at {x = -0.601501, y = 0.831254} and {x = 0.601501, y = -0.831254} shown in Fig.2.2.1.

[2] position P2 ; b1 = 0.5 and b2 = 0.5. In this case, S11x, y has only one locally minimum on the parame-
ter space W 2 at {x = 0.820194, y = -0.859612} shown in Fig.2.2.2.
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[3] position P3 ; b1 = 0.7 and b2 = 0.5. In this case, S11x, y has two locally minimum at {x = 0.896162, y
= -0.907935} and {x = -0.398676, y = 0.90415} shown in Fig.2.2.3.

[4] position P4 ; b1 = 1.0 and b2 = 0.5 (lies in B2). In this case, S11x, y has only one locally minimum at
{x = -0.387582, y = 0.790048} shown in Fig.2.2.4.

[5] position P5 ; b1 = 1.4 and b2 = 0.5. In this case, S11x, y has only one locally minimum on the parame-
ter space W 2 at {x = -0.36349, y = 0.675553} shown in Fig.2.2.5.

[6] position P6 ; b1 = 0.9 and b2 = 0.1. In this case, S11x, y has no locally minimum points on the parame-
ter space W 2 shown in Fig.2.2.6. 

[7]  position  P7  ;  b1  =  0.7  and  b2  =  -0.085687,  which  is  on  the  line.  In  this  case,  S11x, y  has  only  one
locally minimum points on the parameter space W 2 at {x = 0.129372, y = 0.569795} shown in Fig.2.2.7. 

[8] position P8 ; b1 = 0.0 and b2 = -0.5. In this case, S11x, y has two locally minimum at {x = -0.765121,
y = 0.653491} and {x = 0.765121, y = -0.653491} shown in Fig.2.2.8.

   The following figures give cross-sectional images of S11x, y  with the parameters (b1, b2) of positions
P1- P8, respectively. 

　 　　　　　

  Figure 2.2.1. S11x, y with b1 = 0.0 and b2 = 0.5.       Figure 2.2.2.  S11x, y with b1 = 0.5 and b2 = 0.5.    
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 Figure 2.2.3. S11x, y with b1  = 0.7 and b2  = 0.5.      Figure 2.2.4.  S11x, y withb1  = 1.0 and b2  = 0.5.

 Figure 2.2.5. S11x, y with b1 = 1.4 and b2 = 0.5.    Figure 2.2.6. S11x, y with b1 = 0.9 and b2 = 0.1.     

  Figure 2.2.7. S11x, y with b1 = 0.7 and b2 = -0.08.    Figure 2.2.8. S11x, y with b1 = 0.0 and b2 = -0.5.

  2.2.2. Computer simulation
   We generate a time series of length n = 40,000 from the MA(2) models which are discussed above (1), ...
, (8), where the noise is generated from the normal distribution with mean 0 and variance 1. Then we fit an
ARMA(1,1)  model  to  each  of  the  time  series  using  the  conditional  maximum  likelihood  method  with
initial values of parameters for the arguments (x, y) of the model. The calculations below are supported by
the computer software Mathematica (Ver.7) and an application software ([7]).

   (1) Case when MA(2) process with parameters (b1, b2) = (0.0, 0.5). 
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0.5 1.0 1.5 2.0 2.5 3.0
f

0.10

0.15

0.20
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0.30

0.35

spectrum

These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.5, y = -0.5) are provided as the arguments of
ARMA(1,1)  model.  Then  we  have  ARMA(1,1)  model  with  {x  =  0.604353},  {y  =  -0.829897}  as  the
conditional  maximum likelihood  estimate  of  the  model.  On  the  other  hand,  different  initial  values  (x  =
-0.5, y = 0.5) lead to another model, ARMA model with {x = -0.598163}, {y = 0.828965}. Therefore we
can  have  two  conditional  maximum  likelihood  estimates  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the MA(2) process with the parameters (0.0, 0.5), which corresponds to the discus-
sion (1) in 2.2.1 and also Figure 2.2.1.

   (2) Case when MA(2) process with parameters (b1, b2) = (0.5, 0.5). 
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.82, y = -0.86) are provided as the arguments of
ARMA(1,1).  Then  we  have  an  ARMA model  with  {x  =  0.817475},  {y  =  -0.854429}  as  the  conditional
maximum likelihood  estimate  of  an  ARMA(1,1)  model.  On  the  other  hand,  different  initial  values  (x  =
-0.5, y = 0.5) lead to another model, ARMA model with {x = -0.396277}, {y = 0.997437}, this is almost
on the boundary of the domain. Therefore we can have only one conditional maximum likelihood estimate
of  an  ARMA(1,1)  model  when  we  fit  the  ARMA(1,1)  model  to  the  MA(2)  process  with  the  parameters
(0.5,0.5), which corresponds to the discussion (2) in 2.2.1 and also Figure 2.2.2.

   (3) Case when MA(2) process with parameters (b1, b2) = (0.7, 0.5). 
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.9, y = -0.9) are provided as the arguments of
ARMA(1,1).  Then  we  have  an  ARMA model  with  {x  =  0.883103},  {y  =  -0.893064}  as  the  conditional
maximum likelihood  estimate  of  an  ARMA(1,1)  model.  On  the  other  hand,  different  initial  values  (x  =
-0.5,  y  = 0.5)  lead to another  model,  ARMA model with {x = -0.393588},  {y = 0.90174}.  Therefore we
can  have  two  conditional  maximum  likelihood  estimates  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the MA(2) process with the parameters (0.7, 0.5), which corresponds to the discus-
sion (3) in 2.2.1 and also Figure 2.2.3.

   (4) Case when MA(2) process with parameters (b1, b2) = (1.0, 0.5). 
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.5, y = -0.5) are provided as the arguments of
ARMA(1,1).  Then  we  have  an  ARMA  model  with  {x  =  -0.3821},  {y  =  0.787593}  as  the  conditional
maximum likelihood  estimate  of  an  ARMA(1,1)  model.  On  the  other  hand,  different  initial  values  (x  =
-0.5, y = 0.5) lead to the same model, ARMA model with {x = -0.382131}, {y = 0.787618}. Therefore we
can  have  only  one  conditional  maximum likelihood  estimate  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the MA(2) process with the parameters (1.0, 0.5), which corresponds to the discus-
sion (4) in 2.2.1 and also Figure 2.2.4.

   (5) Case when MA(2) process with parameters (b1, b2) = (1.4, 0.5). 
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = -0.5, y = 0.5) are provided as the arguments of
ARMA(1,1).  Then  we  have  an  ARMA model  with  {x  =  -0.354893},  {y  =  0.670486}  as  the  conditional
maximum likelihood  estimate  of  an  ARMA(1,1)  model.  On  the  other  hand,  different  initial  values  (x  =
-0.5, y = 0.5) lead to the   same model, ARMA model with {x = 0.35491}, {y = 0.670501. Therefore we
can  have  only  one  conditional  maximum likelihood  estimate  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the MA(2) process with the parameters (1.4, 0.5), which corresponds to the discus-
sion (5) in 2.2.1 and also Figure 2.2.5.
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   (6) Case when MA(2) process with parameters (b1, b2) = (0.9, 0.1). 
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.5, y = -0.5) are provided as the arguments of
ARMA(1,1).  Then we have an ARMA model with {x = -0.0951825},  {y = 0.994696} as the conditional
maximum likelihood estimate of an ARMA(1,1) model, and a different initial value (x = -0.5, y = 0.5) lead
to the same model, ARMA model with {x = -0.0951822}, {y = 0.994696}, this is almost on the boundary
of the domain. Therefore we have no conditional  maximum likelihood estimate of an ARMA(1,1) model
when  we  fit  the  ARMA(1,1)  model  to  the  MA(2)  process  with  the  parameters  (0.9,  0.1),  which  corre-
sponds to the discussion (6)  in 2.2.1 and also Figure 2.2.6.

   (7) Case when MA(2) process with parameters (b1, b2) = (0.7, -0.086).  
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.5, y = -0.5) are provided as the arguments of
ARMA model(1,1). Then we have an ARMA model with {x = 0.134752},  {y = 0.566116} as the condi-
tional maximum likelihood estimate of an ARMA(1,1) model. Also, different initial values (x  = -0.5, y  =
0.5)  lead  to  the same ARMA model with {x = 0.134751},  {y  = 0.566117}.  Therefore we can have only
one  conditional  maximum  likelihood  estimate  of  an  ARMA(1,1)  model  when  we  fit  the  ARMA(1,1)
model to the MA(2) process with the parameters (0.7, -0.086), which corresponds to the discussion (7) in
2.2.1 and also Figure 2.2.7.

   (8) Case when MA(2) process with parameters (b1, b2) = (0.0, -0.5).  
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These  are  plots  of  the  sample  auto-correlation  function  and  the  sample  spectrum.  We  estimate  the
ARMA(1,1)  model  parameters  using  the  conditional  maximum  likelihood  method  with  some  different
initial parameter values. The initial parameter values (x = 0.75, y = -0.65) are provided as the arguments of
ARMA(1,1) model. Then we have an ARMA model with {x = 0.766094}, {y = -0.650514} as the condi-
tional maximum likelihood estimate of the model. On the other hand, different initial values (x = -0.75, y =
0.65)  lead  to  another  ARMA model with  {x  = -0.774099},  {y  = 0.664496}.  Therefore we can have  two
conditional maximum likelihood estimates of an ARMA(1,1) model when we fit the ARMA(1,1) model to
the  MA(2)  process  with  the  parameters  (0.0,  -0.5),  which  corresponds  to  the  discussion  (8)  in  2.2.1  and
also Figure 2.2.8.

3. Averaging model of all fitted models
   Isn’t there any method of approximating the true model (process) which generated the data
from two or more of the incorrect-identified models? We propose a new method (averaging
model) by use of the estimated ARMA(1,1) models from the example treated in Chapter 2.
The concept for the model averaging is given in bayesian model averaging (Lunn, Jackson,
Best, Thomas and Spiegelhalter [9]). They said that Bernardo and Smith [2] showed decision-
theoretically this provides optimal prediction or estimation under an “M-closed” situation, in
which the true process is among the list of candidate models. Our situation is an “M-open”, in
which the true process is not there any more. In this section we shall only make a suggestion
since the theoretical discussion seems to be very difficult for us. 

   (1) MA(2) model with b1= 0.0 and b2 = 0.5. In this case, we have two ARMA(1,1) models with parame-
ters {x = -0.601501, y = 0.831254} and {x = 0.601501, y = -0.831254}. The true spectral density function
of the MA(2) process and spectral densities of the fitted ARMA(1,1) models are 
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Therefore, we define what compounded the spectrum of two applied models (average). It turns out that
this reproduces the feature which the original spectrum has. We also define as follows the model which
combined two models (average).  When the transfer function of the two ARMA(1,1) models is  weight
averaged, it turns out that this serves as a transfer function of an ARMA(2,2) model. The weight of a
weighted average uses the reciprocal of noise variance (in this case, since both two models have equal
variance, it serves as an arithmetic average). 

1
2   ( 1+0.831254 B

1-0.601501 B +
1-0.831254 B
1+0.601501 B )   =  1.+0.5 B2

1.+0. B-0.361803 B2 (3.1)

Thus the averaging model is an ARMA(2,2) model with parameters {0.0, -0.361803} and {0.0, 0.5}.
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The averaging spectrum expresses well the feature of the spectrum of a true model (MA(2) process).

   (2) MA(2) model with b1 = 0.7 and b2 = 0.5. In this case, S11x, y has two locally minimum at {x =
0.896162, y = -0.907935} and {x = -0.398676, y = 0.90415} shown in Fig.3.3.
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The equalization (averaging) spectrum seems to express well the feature of the spectrum of a true model
(MA(2) process) rather than the spectrum of the ARMA(1,1) model except for the position of a peak. 

   (3) MA(2) model with b1 = 0.0 and b2 = -0.5. In this case, S11x, y has two locally minimum at {x =
-0.765121, y = 0.653491} and {x = 0.765121, y = -0.653491}.
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We can say that the equalization (averaging) spectrum expresses well the feature of the spectrum of a true
MA(2) process rather than each spectrum of the ARMA(1,1) models. 

4. On misspecified MA(2) model fitting to an AR(2) process
When the  incorrect-identified model  is  applied,  how many the misspecified models  are  presumed?

Although the ARMA(1,1) model had been considered until now, even when a true model was which of
AR(2) and MA(2), the model obtained with the conditional maximum likelihood method was at most two.
It is imagined that the number of the models presumed changes by the model to fit and also by the true
process. Here we shall pay attention to MA(2) model. Furthermore, we assume that the time series applied
to the model follows AR(2) process. Since calculation is very complicated and generalities are not made,
we consider  a special  case only.  These contents  serve as extension  of the paper before fitting MA(1)
model to AR(2) process. We note saying to how many the model which locally maximizes a conditional
likelihood function appears. Although it was a maximum of two until now in the case of this MA(2) model
fitting, the example in which three models appear is found. And we can confirm the fact in simulation with
the case of a large sample.
   We  consider  the  case  when  an  MA(2)  model  is  fitted  incorrectly  to  an  AR(2)  process  {X(t)},
(1- a1 B- a2 B2) X(t)  = e(t).  We set  the MA(2) model parameters (x,  y).  In this  case,  Sp,qQ  can be
derived from (2.7) as
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S2x, y = S2x, y ; a1, a2
                   = f x,y

gx,y , 

   where    f x, y= 1- y- x a1- x y a1+ y a1
2- y2 a1

2+a2- x2 a2- y a2- x2 y a2+

x a1 a2- x y2 a1 a2- y a1
2 a2+ y2 a1

2 a2- x2 a2
2- x2 y a2

2- y2 a2
2+ y3 a2

2+ x y a1 a2
2+ x y2 a1 a2

2- y2 a2
3+ y3 a2

3,

g x, y= 1  x  y 1  y 1  x  y 1  a2
1  a1  a2 1  a1  a2 1  x a1  y a1

2  x2 a2  2 y a2  x y a1 a2  y2 a2
2.

 (4.1)

Fallowing to the previous section, we have tried to analysis the locally minimum points of  the S2(x, y).
But it is very difficult to solve the general equations such that

∑ S2x, y
∑x

= 0, 4.2
∑ S2x, y

∑y
= 0. 4.3

Here we present a special example in which the function S2(x, y) has three locally minimal points on the
invertible parameter space. We have the following graph of a crosssection of the S2(x, y) if the fitted model
is an AR(2) process whose parameters are a1 = 0.0 and a2 = 0.95. 

Figure 4.1.  A crosssection of S2x, y when a1 = 0.0 and a2 = 0.95.

In order to investigate the minimal point of the function S2x, y, it is first necessary to consider its locally
minimal points on the admissible parameter space (W2 A) of AR(2) process with parameters a1  and a2,
where 

              W 2 A =  {(a1, a2); 0§ (a1+a2+1)(a2-a1+1), -2§ a1 § 2, -1§ a2 § 1}.  (4.4)

The locally minimal and maximal points satisfy the following equations, 
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     1.8 x  3.8 x3  1.805 x5  5.79 x y  3.8 x3 y  1.805 x5 y 
3.99 x y2  3.4295 x3 y2  3.249 x y3  3.4295 x3 y3  5.04949 x y4  1.80049 x y5  0

    (4.5)   

    1.9  3.805 x2  1.71 x4  2.19 y  3.8 x2 y  5.415 x4 y 
5.30525 y2  7.5905 x2 y2  5.14425 x4 y2  5.9705 y3  6.4885 x2 y3  1.6245 x4 y3 

4.9495 y4  3.78599 x2 y4  5.41049 y5  3.4295 x2 y5  1.54327 y6  1.62901 y7  0

  (4.6)

The real solutions of two equations above are shown in Figure.4.2
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               Figure. 4.2.   Real solutions     Figure. 4.3.  Three locally minimal points

We can see in Figure.4.3 that there are three locally minimal points in the domain W 2 A such that
        A: {0.0, 0.805225},    B: { -1.3453,  -0.546645},   C: { 1.3453,  -0.546645}.
Corresponding to these points, we have three MA(2) models which have the points for their parameter.
We show three spectral density functions of these models and that of the true model.
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             Figure.4.4. Spectral density function for A.        Figure.4.5. Spectral density function for B.
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           Figure.4.6. Spectral density function for C.     Figure.4.7. Spectral density of the true model.
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Furthermore, in the case of a1  = 0.0 and a2  ¥ 0.94, we can also determine that there are three MA(2)
models which are fitted to the AR(2) process. 

5. Conclusion
   In Section 2, we have considered the misspecified ARMA(1,1) model fitting to MA(2) processes follow-
ing to the previous paper[11] in 2012. The conditions for MA(2) parameters on which ARMA(1,1) quasi-
likelihood function has more than one local maximum points in the stationary and invertible parameter
space were given as the domain D2 for MA(2) parameters (b1, b2) shown in Figure.5. It related to critical
point theory and the behavior of degenerate critical points of the function of two variables in Catastrophe
theory,  considering the ARMA(1,1) quasi-likelihood function as a potential  function with two external
parameters b1 and b2. 
   In Section 4, we have also considered on the misspecified MA(2) model fitting to AR(2) processes. It
was already given the domain for AR(2) parameters on which the MA(1) quasi-likelihood function has
more than one local maximum point.  Our new result presented here is that the MA(2) quasi-likelihood
function  has  three  local  maximum points  in  the  invertible  parameter  space  W2.  Furthermore we have
shown that more general ARMA model has more than three local maximum points in the stationary and
invertible parameter space W2. However, I have not performed yet determining the domain where three
models exist in parameter space W2. We will wait for future research findings about this problem. More-
over, is the number of a misspecified model estimated to at most three? We have discovered an example to
which six models are estimated by the initial value in a simulation for an ARMA(3,3) model fitting to
ARMA(3,6) processes. However, though regrettable, theoretical proof is not made to this result. It is also a
future subject about this problem. 
   Considering these researches, we shall also conjecture that an ARMA(p,q) model has more than one
locally maximum points in the stationary and invertible parameter space, if it fitted to a series belongs to
an ARMA(p, q+r) process for any positive integer p, q and some r¥1.
   The purpose of our research at the last is to investigate what kind of phenomenon happens, when the
misspecified model is applied to a certain time series, but probably, it may be insufficient. It will be neces-
sary to utilize well two or more models obtained there, and to make it useful for the estimation of a true
model, as we discussed in Section 3.
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