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Abstract.  This paper gives a discussion on a misspecified ARMA(1,1) model fitting to an AR(2) process. The prob-
lem concerning a number of globally and locally maximal points of the conditional likelihood function is investigated
when the sample size tends to infinity. We shall detect the conditions of AR(2) parameters on which the ARMA(1,1)
conditional likelihood function has more than one locally maximal points in the stationary and invertible parameter
space.
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1. Introduction
This paper is a sequel to "On a moving average time series model fitting" contributed with Mr. Kenji Aoki in 1991

([9]). 
In time series analysis, we usually apply the suitable linear model for a given time series data to predict a future value

using the model. When fitting a model to the data, the parameters of a model will be estimated, and then we assume
some probability distribution and generally the maximum likelihood method is  used.  If  a true model is  fitted to a
process, then its unknown parameters can be precisely estimated. But when a model is incorrect, the statistical proper-
ties of the estimators will be known very little. The problem concerning maximum likelihood estimation of misspecified
models has been investigated by many authors. In particular, the asymptotic properties (consistency) of the estimators
of the parameters of a misspecified ARMA model have been discussed ([7]). 
    Also it is known that when we fit an MA(1) model to some special time series data which is not followed by MA(1)
process, the MA(1) parameter does not have an unique Gaussian quasi-maximum likelihood estimator. Tanaka and
Huzii [10] have given the conditions of AR(2) parameters on which the MA(1) quasi-likelihood function has more than
one local maximal points in the invertible parameter space (-1, 1). Furthermore, Tanaka and Aoki [9] gave the region
for the AR(2) parameters on which the MA(1) quasi-likelihood function has more than one local maximal points in the
parameter space. In this case, maximizing the likelihood function is equivalent to minimizing the following function
S(x; a, b) when the data length is large (see [10]). Here x is an MA(1) parameter and a and b are AR(2) parameters.

 S�x; a, b� � 1�b�a �1�b� x�b �1�b� x2

�1�b� �1�a2�2 b�b2� �1�x2� �1�a x�b x2� .      (1.1)

From Tanaka and Huzii [10], we have two minimal points of the function S(x;a,b) = S(x), say. For example, in the case
of an AR(2) process with a = -0.1, b = 0.8, the function S(x) has a graph shown in the following figure. 
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 Figure 1.  Graph of S(x;a,b) with a = -0.1, b = 0.8.

In order to have the conditions on which the function has two local minimal points in the parameter space, we should 
consider the differentiation DS(x) = 0. And we specified the case where the solution of the equation DS(x) = 0 changed 
from three to two. That is, the value of the resultant ([5]) was able to formalize the contour line for zero (the bifurcation 
set). We set the domain D1 with a deep color surrounded with the curve of the shape of a wedge given in the upper part 
of Fig. 2. Its boundary is the bifurcation set. It will be locally seen a cusp.
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 Figure 2. Bifurcation set and the domain D1 for S(x;a,b).

The function S(x) has the two minimum points separated by a maximum with in D1, whereas outside it S(x) has a 
single minimum, which was given by Prof. Aoki using the concept of the cusp of Catastrophe theory with a potential 
S(x). It is also seen that the two minimum points are put together and S(x) has only one minimum point at the tip of the 
cusp (refer to information science research No.12 [9], and also [4] and [8] for details). 
   In this paper, we shall extend the model to the autoregressive moving average ARMA (1, 1) model and consider a
problem similar to the misspecified MA(1) model fitting to AR(2) processes.
   This paper is supported by the computer software Mathematica V9.0 and its application Time Series Pack for Mathe-
matica ([6]).

2. Results on misspecified ARMA(1,1) model fitting
Let {Z(t)} be a weakly stationary process with EZ(t) = 0. {Z(t)} is said to satisfy a autoregressive moving average
model of order p and q (ARMA(p, q) model) if {Z(t)} is expressed as

 ( 1 � a 1B � ... � ap Bp) Z (t) = ( 1 � b1 B � ... � bq Bq) e(t),       (2.1)

where {e(t)}, t being an integer, consists of independently and identically distributed ran-dom variables with E[e(t)] = 0,
E�e�t�2� = Σ2, the ap's and bq's are constants which are independent of t, and B is the usual backshift operator such that
B[e(t)] = e(t-1) and Bk[e(t)] = B�Bk�1[e(t)]] for k =1,2,.. (see, for example, [2], [3]).
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where {e(t)}, t being an integer, consists of independently and identically distributed ran-dom variables with E[e(t)] = 0,
E�e�t�2� = Σ2, the ap's and bq's are constants which are independent of t, and B is the usual backshift operator such that
B[e(t)] = e(t-1) and Bk[e(t)] = B�Bk�1[e(t)]] for k =1,2,.. (see, for example, [2], [3]).

Let

 Φ�B� � 1 � a 1B � ... � ap Bp � �
k�1

p �1 � Φk B�,  (2.2)

 Θ�B� � 1 � b1 B � ... � bq B q � �
k�1

q �1 � Θk B�.  (2.3)

In our model fitting,  it is assumed that � Φh� < 1,   � Θk� � 1 for all h = 1, 2,·· ·, p, and k = 1, 2,·· ·, q. Let � =
(Φ1, ..., Φp, Θ1, ..·, Θq) be a (p+q)-dimensional unknown parameter, and let {Fk(�)} be a sequence of functions of �, 
which are defined in the following way. For t > 0,

e(t) = {�
k�1

p �1 � Φk B�  �
k�1

q �1 � Θk B��1}Z(t) = ��k�1
� Fk��� Bk� Z�t�.    (2.4)

For evaluating the asymptotic properties of the conditional quasi-maximum likelihood estimators of � when the sample
size tends to infinity, we should attend to a function

 Sp,q��� � E�e�t�2�
� ��1�21�2 �k�1

p �1�Φk exp��2 �iΩ�� 2

�j�1
q �1�Θ j exp��2 �iΩ�� 2 fZ�Ω� �Ω.

 (2.5)

The value �
�

 which minimizes Sp,q��� with respect to � should be obtained (see Tanaka and Huzii [10] and also Huzii
[5]).
The spectrum of an ARMA(p,q) process fZ�Ω� is given by 

 fZ�Ω� � Σ2

2 Π
�Θ�e�iΩ��2�Φ�e�iΩ��2. .  (2.6)

AR and MA spectra are special cases of this spectrum when Θ �x� � 1 and Φ�x� � 1, respectively. 

Therefore if the process {Z(t)} is an ARMA(p,q) process and is correctly fitted by the ARMA(p,q) model, then we

have Sp,q��� � Σ2

2 Π
, which is a spectral density of a white noise process.

Let {X(t)} be a weakly stationary process with mean E[X(t)]  = 0 and spectral density fX �Ω�. When we consider an
ARMA(p,q) model fitting to this process {X(t)}, then Sp,q��� is expressed as

Sp,q��� � ��1�21�2 �k�1
p �1�Φk exp��2 �iΩ�� 2

�j�1
q �1�Θ j exp��2 �iΩ�� 2 fX �Ω� �Ω.       (2.7)

In this paper, consideration is given to the case when an ARMA(1,1) model is fitted incorrectly to an AR(2) process
{X(t)}; (1 � a B � b B2)X(t) = e(t). Here we set the ARMA(1,1) model parameters (x, y) in stead of (Φ, Θ). In this case,

Sp,q��� can be derived from (2.7), ignoring the constant term Σ
2

2 Π
, as
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S11�x, y� � S1,1�x, y ; a, b�
 = 

1�b�2 a x��1�b� x2���a �1�b��2 �1�b2� x�a �1�b� x2� y�b �1�b�2 a x��1�b� x2� y2

�1�b� �1�a2�2 b�b2� �1�y2� �1�a y�b y2� .     (2.8)

If we fit the ARMA(1, 1) model to a special AR(2) process, the function S11�x, y� will have two minimal points. For a
example, we have the following graph for an AR(2) process whose parameters are a = 0.4, b = 0.9. 

 Figure 3. Cross section of S11�x, y� with a = 0.4, b = 0.9.

In order to investigate the minimal point of the function S11�x, y�, it is first necessary to consider its locally minimal
points on the admissible parameter space (�) of AR(2) process with parameters a and b, where 

 � = {(a,b); 0� (b+a+1)(b-a+1), -2� a � 2, -1� b � 1}.

The locally minimal and maximal points satisfy the following equations, 

� S11�x, y�
�x

� 0, �2.9�
� S11�x, y�
�y

� 0. �2.10�
We shall solve the equations. The equation (2.9) is equivalent to 

a � x � b x � y � b2 y � a x y � a b x y � a b y2 � b x y2 � b2 x y2 � 0. �2.11�
Then we have 

x �
a���1�b2� y�a b y2

1�b�a y�a b y�b y2�b2 y2
.  (2.12)

Also the equation (2.10) is equivalent to the following equation,
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a � x � a2 x � b2 x � a x2 � y � b y � 2 b2 y � 2 a x y � 4 a b x y � x2 y � b x2 y � 2 b2 x2 y � a y2 � 2 a b y2 � a b2 y2 �

x y2 � 3 a2 x y2 � b x y2 � a2 b x y2 � b2 x y2 � b3 x y2 � a x2 y2 � 2 a b x2 y2 � a b2 x2 y2 � a2 y3 � 2 b y3 � a2 b y3 �

2 b2 y3 � 2 a x y3 � 4 a b x y3 � 2 a b2 x y3 � a2 x2 y3 � 2 b x2 y3 � a2 b x2 y3 � 2 b2 x2 y3 � 2 a b y4 � a b2 y4 � 3 b x y4 �

a2 b x y4 � 3 b3 x y4 � 2 a b x2 y4 � a b2 x2 y4 � b2 y5 � b3 y5 � 2 a b2 x y5 � b2 x2 y5 � b3 x2 y5 � 0 . �2.13�
From (2.12) and (2.13),

�1�a�b� �1�a�b� �a�b �1�b� y� ��1�y2�2 �b�a y�a b y�2 b y2�b3 y4�
��1�a y�b2 y2�b ��1�a y�y2��2 � 0.  (2.14)

Therefore in order to have a real solution (x, y) of the equations (2.9) and (2.10), it is necessary to have a real solution y
of the equation (2.14) on the parameter space �. Then it is essentially equivalent to 

 �a � b y � b2 y� �b � a y � a b y � 2 b y2 � b3 y4� � 0.  (2.15)

In general, it is very difficult to solve the equation, but to know the number of the real solutions it is sufficient to
consider the resultant of the polynomial 

 f �y� � �a � b y � b2 y� �b � a y � a b y � 2 b y2 � b3 y4� .  (2.16)

Since the derivative of f is given by

�

� y
f �y� � �a2 � a2 b � b2 � b3 � 6 a b y � 2 a b3 y � 6 b2 y2 � 6 b3 y2 � 4 a b3 y3 � 5 b4 y4 � 5 b5 y4, �2.17�

the resultant of the two polynomials (2.16) and (2.17) on y is give as 

 R�a, b� � ��1 � a � b�2 ��1 � b�2 b16 �1 � b� �1 � a � b�2 �a � b � b2�2 ��a � b � b2�2 �32 a2 � 27 a4 � 54 a4 b � 256 b2 � 288 a2 b2 � 27 a4 b2 � 512 b3 � 256 b4�.  (2.18)

From the Catastrophe theory, a number of locally minimum points of S11�x, y� on � for AR(2) process with parameters
(a, b) is explained by considering a change for the sign of the resultant R(a, b). If the two polynomials (2.16) and (2.17)
have common zeros, the resultant must be vanished. Hence we consider the conditions for R(a, b)= 0 on � ={(a,b); 0�
(b+a+1)(b-a+1), -2�a�2, -1�b�1}.
Since the polynomial;

 �32 a2 � 27 a4 � 54 a4 b � 256 b2 � 288 a2 b2 � 27 a4 b2 � 512 b3 � 256 b4�  (2.19)

 in (10) is always non-negative on � (see Appendix), it is sufficient to consider the zeros of a polynomial 

 g1�a, b� � ��1 � a � b� ��1 � b� b �1 � b� �1 � a � b� �a � b � b2� �a � b � b2�.       (2.20)

We have the following graph of a contour of g1(a,b) = 0 on �.
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 Figure 4. A contour line of g1(a,b) = 0 for AR(2) parameters (a, b).

It turns out that the function S11�x, y� has the two minimum points in a domain (D2) of a portion with a deep color
surrounded with the curve in Fig.5, where

 D2 � ��a, b� � �; �a � b � b2� �a � b � b2� � 0 �.  (2.21)

Also we define the (bifurcation) set

 B2 � ��a, b� � �; �a � b � b2� �a � b � b2� � 0 �.  (2.22)

When numerical integration is performed using Mathematica (Ver.9), it turns out that the area of this domain D2 will
be 2.0 square, and the rate to the parameter space of a lower triangle will be 50% exactly. It means that the domain D2
where S11�x, y� has 2 minimum points becomes about 3 times larger than the area of the domain D1 shown in Fig.2,
since its area is about 0.70 (17.6%). 
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 Figure 5. The domain D2 for AR(2) parameters (a, b). 

We determine the form of S11�x, y� at every point in D2, by considering only one point within each of the domain in the
next section.
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3. Illustrations and simulation
3.1 Illustrations
   By varying the AR(2) parameters, a and b, continuously and staying inside of D2, for example, going from position
P1 to P2 in Fig.6, the system remains in a stable equilibrium that is the function S11�x, y� has two minima. However, if
a  and b  are changed so that the bifurcation set B2 is transversed, something unusual happens. To see this, start in
position P2 of Fig.6, where the system is in a stable equilibrium. Moving parallel to the a-axis toward position P3,
when position P3 is reached, the system becomes unstablethe and the function S11�x, y� has only one minima. There the
system is stable again and remains so while moving onward to position P4. In position P5 inside of D2, it is also seen
that the function S11�x, y� has two minima.
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 Figure 6. Selected parameters (a, b) of positions P1- P5.

[1]  position P1 ; a = 0.0 and b = 0.5. In this case, S11�x, y� has two locally minimum points on the parameter space � at
{x = -0.5, y = 0.732051} and {x = 0.5, y = -0.732051}, which is shown in Fig.3.1.
[2] position P2 ; a = 0.5 and b = 0.5. In this case, S11�x, y� has two locally minimum points on the parameter space � at
{x = -0.0417278, y = 0.604608} and{x = 0.867418, y = -0.897478}, which is shown in Fig.3.2.
[3] position P3 ; a = 0.75 and b = 0.5 (lies in B2). In this case, S11�x, y� has only one locally minimum point on the
parameter space � at {x = 0.208367, y = 0.551929}, which is shown in Fig.3.3.
[4] position P4 ; a = 1.0 and b = 0.5. In this case, S11�x, y� has only one locally minimum point on the parameter space
� at {x = 0.467188, y = 0.505418}, which is shown in Fig.3.4.
[5]  position P5 ; a = 0.0 and b = -0.8. In this case, S11�x, y� has two locally minimum points on the parameter space �
at {x = 0.866025, y = -0.732051} and {x = -0.866025, y = 0.732051}, which is shown in Fig.3.5.

 The following figures give qualitative graphs of S11�x, y� for the parameters (a, b) of positions P1- P5, respectively. 
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 Figure 3.1. S11�x, y� with a = 0.0 and b = 0.5. Figure 3.2.  S11�x, y� with a = 0.5 and b = 0.5.    

 Figure 3.3. S11�x, y� with a = 0.75 and b = 0.5. Figure 3.4.  S11�x, y� with a = 1.0 and b = 0.5.       

 Figure 3.5. S11�x, y� with a = 0.0 and b = -0.8. 

3.2 Simulation 
   We generate a time series of length n = 250 from the AR(2) models which are discussed above [1], ... , [5], where the
noise is generated from the normal distribution with mean 0 and variance 1. Then we fit an ARMA(1,1) model to each
of the time series using the conditional maximum likelihood method with initial values of parameters for the arguments
(x,  y)  of  the model.  The calculations below are supported by the computer  software Mathematica  (V.9.0)  and an
application software ([5]).
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[1] Case when AR(2) process with parameters (a, b) = (0.0, 0.5).
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 Here is the plot of the sample correlation function. 
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Here is the plot of the sample spectrum.

When we estimate the AR model parameters using the conditional maximum likelihood method, it turns out that AR(2)
has a lower AIC value (-0.191707).

1 ARModel���0.0105462�, 1.03342� 0.0408735 1
2 ARModel���0.0133694, �0.46747�, 0.812445� �0.191707 2
3 ARModel���0.0113916, �0.467345, 0.00443366�, 0.815708� �0.179699 3
4 ARModel���0.0114683, �0.496194, 0.00494844, �0.0610469�, 0.812564� �0.175561 4

Next we estimate the ARMA(1,1) model parameters using the conditional maximum likelihood method with some
different initial parameter values. The initial parameter values (x = -0.5, y = 0.5) are provided as the arguments of
ARMA model (1,1). Then we have ARMA model [{x = -0.553568}, {y =0.788606}, 0.956614 ] as the conditional
maximum likelihood estimate of an ARMA(1,1) model. 
On the other hand, different initial values (x = 0.5, y = -0.5) lead to another model, ARMA model [{x = 0.546659}, {y
= -0.776022}, 0.963346 ] .
Therefore  we can  have two conditional  maximum likelihood estimates  of  an  ARMA(1,1)  model  when we fit  the
ARMA(1,1) model to the AR(2) process with the parameters (0.0, 0.5), which corresponds to the discussion [5] in 3.1
and also Figure 3.5.
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[2] Case when AR(2) process with parameters (a, b) = (0.5, 0.5).
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 Here is the plot of the sample correlation function. 
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Here is the plot of the sample spectrum.

When we estimate the AR model parameters using the conditional maximum likelihood method, it turns out that AR(2)
has a lower AIC value (-0.0608918).

1 ARModel��0.345558�, 1.13956� 0.138642 1
2 ARModel��0.497681, �0.436744�, 0.92599� �0.0608918 2
3 ARModel��0.478082, �0.413745, �0.0474331�, 0.927595� �0.0511598 3
4 ARModel��0.479572, �0.403076, �0.0605061, 0.0297809�, 0.930096� �0.0404674 4

Next we estimate the ARMA(1,1) model parameters using the conditional maximum likelihood method with some
different initial parameter values.
The initial parameter values (x = 0.7, y = -0.8) are provided as the arguments of ARMA model (1,1). Then we have
ARMA model [{x = 0.877052}, {y = -0.908966}, 1.29477] as the conditional maximum likelihood estimate of  an
ARMA(1,1) model. 
On the other hand, different initial values (x = -0.7, y = 0.8)  lead to another model, ARMA model [{x = 0.0119532},
{y = 0.501642}, 1.02417].
Therefore  we  have  two  conditional  maximum  likelihood  estimates  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the AR(2) process with the parameters (0.5, 0.5), which corresponds to the discussion [2] in 3.1
and also Figure 3.2.
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[3] Case when AR(2) process with parameters (a, b) = (0.75, 0.5).
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 Here is the plot of the sample correlation function. 
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Here is the plot of the sample spectrum.

When we estimate the AR model parameters using the conditional maximum likelihood method, it turns out that AR(2)
has a lower AIC value (-0.191475).

1 ARModel��0.508648�, 1.04106� 0.0482427 1
2 ARModel��0.74941, �0.471886�, 0.812634� �0.191475 2
3 ARModel��0.738451, �0.45428, �0.0234112�, 0.815471� �0.17999 3
4 ARModel��0.7365, �0.486534, 0.0305719, �0.0714131�, 0.811182� �0.177263 4

Next we estimate the ARMA(1,1) model parameters using the conditional maximum likelihood method with some
different initial parameter values.
The initial parameter values (x = 0.7, y = -0.8) are provided as the arguments of ARMA model (1,1). Then we have
ARMA model[{x = 0.187419},  {y = 0.583655},  0.86927]  as  the conditional maximum likelihood estimate of  an
ARMA(1,1) model. 
 Different initial values (x = -0.7, y = 0.8)  lead to the same model.

Therefore  we have only one  conditional  maximum likelihood estimate  of  an  ARMA(1,1)  model  when we fit  the
ARMA(1,1) model to the AR(2) process with the parameters (0.75, 0.5), which corresponds to the discussion [3] in 3.1
and also Figure 3.3.
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Therefore  we have only one  conditional  maximum likelihood estimate  of  an  ARMA(1,1)  model  when we fit  the
ARMA(1,1) model to the AR(2) process with the parameters (0.75, 0.5), which corresponds to the discussion [3] in 3.1
and also Figure 3.3.

[4] Case when AR(2) process with parameters (a, b) = (1.0, 0.5).
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 Here is the plot of the sample correlation function. 
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Here is the plot of the sample spectrum.

When we estimate the AR model parameters from the data using the conditional maximum likelihood method, it turns
out that AR(2) has a lower AIC value (-0.190295).

1 ARModel��0.671852�, 1.07934� 0.0843472 1
2 ARModel��1.00781, �0.499501�, 0.813593� �0.190295 2
3 ARModel��0.988389, �0.46024, �0.0390077�, 0.815645� �0.179776 3
4 ARModel��0.986122, �0.485076, 0.0157204, �0.053866�, 0.813146� �0.174845 4

Next we estimate the ARMA(1,1) model parameters using the conditional maximum likelihood method with some
different initial parameter values.
The initial parameter values (x = 0.7, y = -0.8) are provided as the arguments of ARMA model (1,1). Then we have
ARMA model[{x  = 0.458668},  {y= 0.535122},  0.874477]  as  the  conditional  maximum likelihood estimate  of  an
ARMA(1,1) model. 
On the other hand, different initial values (x = 0.5, y = -0.5)  lead to another model, ARMA model[{x = 0.458677}, {y
= 0.535107}, 0.874477].
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On the other hand, different initial values (x = 0.5, y = -0.5)  lead to another model, ARMA model[{x = 0.458677}, {y
= 0.535107}, 0.874477].
Therefore  we  have  two  conditional  maximum  likelihood  estimates  of  an  ARMA(1,1)  model  when  we  fit  the
ARMA(1,1) model to the AR(2) process with the parameters (1.0, 0.5), which corresponds to the discussion [4] in 3.1
and also Figure 3.4.

[5]  Case when AR(2) process with the parameters (a, b) = (0.0, -0.8).
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Here is the plot of the sample correlation function. 
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Here is the plot of the sample spectrum.

When we estimate the AR model parameters from the data using the conditional maximum likelihood method, it turns
out that AR(2) has a lower AIC value. If we fit an AR(2) model to the data,  the conditional maximum likelihood
estimates are given as AR model [{-0.0309124, 0.778491}, 0.907196], which means that a = -0.0309124, b = 0.77849
and Σ2 �0.907196. 

1 ARModel���0.13487�, 2.26939� 0.82751 1
2 ARModel���0.0309124, 0.778491�, 0.907196� �0.0813971 2
3 ARModel��0.0045962, 0.7732, �0.0419463�, 0.897542� �0.0840948 3
4 ARModel��0.0137434, 0.791136, �0.0465155, �0.0261294�, 0.893215� �0.0809279 4

Next we estimate the ARMA(1,1) model parameters using the conditional maximum likelihood method with some
different initial parameter values.
The initial parameter values (x = -0.5, y = 0.5) are provided as the arguments of ARMA model (1,1). Then we have
ARMA model [{x = -0.966694}, {y =0.820735}, 1.66297 ] as the conditional maximum likelihood estimate of  an
ARMA(1,1) model.
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The initial parameter values (x = -0.5, y = 0.5) are provided as the arguments of ARMA model (1,1). Then we have
ARMA model [{x = -0.966694}, {y =0.820735}, 1.66297 ] as the conditional maximum likelihood estimate of  an
ARMA(1,1) model. 
On the other hand, different initial values (x = 0.5, y = -0.5)  lead to another model, ARMA model[{x = 0.958326}, {y
= -0.845974},  2.02728].
Therefore, depending on the initial parameter values, we have two conditional maximum likelihood estimates of an
ARMA(1,1) model when we fit the ARMA(1,1) model to the AR(2) process with the parameters (0.0, -0.8), which
corresponds to the case [5] in 3.1 and also Figure 3.5.

4. Conclusion
In this paper, we have considered the misspecified ARMA(1,1) model fitting to AR(2) processes. The conditions for

AR(2) parameters on which ARMA(1,1) quasi-likelihood function has more than one local maximum points in the
stationary and invertible parameter space were given as the domain D2 for AR(2) parameters (a, b), and it was shown
in Fig.5. It related to critical point theory and the behaviour of degenerate critical points of the function of two variables
in Catastrophe theory, considering the ARMA(1,1) quasi-likelihood function as a potential function with two external
parameters a and b. On the misspecified MA(1) model fitting to AR(2) processes, it is already seen that the domain for
AR(2) parameters on which the MA(1) quasi-likelihood function has more than one local maximum points is related to
a cusp catastrophe. Our result presented in this paper will be also explained completely by using Catastrophe Theory.
   Applying a stationary ARMA model to time series data in actual data analysis, there is a possibility that two or more
candidates for the model parameters exist, and then we cannot estimate the parameters of the model well. We also know
that the ARMA (1, 1) model seems to be more sensitive than MA (1) model about incorrect discernment. Therefore, if
such a  phenomenon appears  in  the  parameter  estimation for  an  ARMA model  fitting,  the  applied model  must  be
different from a true (or proper) model, and then we should change the model immediately. 

Appendix
 We should check the local maximal or minimal values of 

 g2�a, b� � �32 a2 � 27 a4 � 54 a4 b � 256 b2 � 288 a2 b2 � 27 a4 b2 � 512 b3 � 256 b4�,  say.    (A1)

Then we have

� g2�a,b�
�a

� 64 a � 108 a3 � 216 a3 b � 576 a b2 � 108 a3 b2 � 0,  (A2)

� g2�a,b�
�b

� 54 a4 � 512 b � 576 a2 b � 54 a4 b � 1536 b2 � 1024 b3 � 0 .      (A3)

The solutions of real number for the equations (10) and (11) in � ={(a,b); 0�(b+a+1)(b-a+1), -2�a�2, -1�b�1} are 

�a � 0, b � �1�, �a � 0, b � �
1

2
�, �a � 0, b � 0�,

�a � �4

3
�10 � 105 , b �

1

12
�9 � 105 �� and �a � 4

3
�10 � 105 , b �

1

12
�9 � 105 ��.

The local maximal or minimal values of g2(a,b) at those points are {0, 16, 0, 8.561, 8.561}, respectively. Also g2(a,b) �
0 on the boundary of �. Thus the minimum of the function g2(a,b) is 0 at (a, b) = (0, -1) and (0, 0). �
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