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Abstract. This paper deals with a statistical time series modelling for annual extreme values of a daily
averages of the International relative sunspot number. We focus on two time series of annual maximum
and minimum sunspot numbers, and individually we consider the prediction of the data based on an AR
model and also the estimation of a probability distribution function of the residuals derived from the
model.
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1. Introduction

The sun has a great influences on the earth like the cold weather affects the rice crop, and so it must be
very important for us to analyze solar activity. A well-known data for the solar yearly activity will be the
International sunspot number, which was first  reported by Wolf in 1852  (Thoms and Weiss [10]). A
series of numbers of yearly averaged sunspot (from 1700 to 2011) has about 11-year period (see Figure
A1 in Appendix).  The series has been analyzed by many authors and researchers (see, for  example,
Brockwell and Davis [1], Pourahmadi [9]). 

    In the previous paper [7], we have considered the prediction of a solar cycles from the yearly sunspot
numbers based on an AR(9) model. Furthermore, we focused on a daily averages of sunspot numbers and
also on a time series of annual maximum sunspot numbers. We discussed the estimation of a probability
distribution function and the prediction of the annual maximum data. Unhappily we found that the used
data was not a daily averages of sunspot numbers but the area daily averages for the sunspots. In this
paper we shall retry modelling and analyzing a true daily sunspot numbers.

    We use a daily averages of the International Sunspot Number (published in Solar Influences Data
Analysis Center (SIDC) in Belgium). It should be noted that daily values for years prior to 1849  are
partly missing. The available data is for the period 1 January 1849 through 31 March 2011 plotted in
Figure 1. A histogram is given in Figure 2. It is seen that the series has many zeros and the ratio of zero
number is about 15%.
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                 Figure 1. The series of daily sunspot numbers from 1 Jan. 1849 through 2 Mar. 2011.

                                Figure 2. Histogram of the daily sunspot numbers.

Similar to the yearly averaged sunspot numbers, the level of the series seems to oscillate with an approxi-
mate period of 11. But the series of daily sunspot number is fluctuating widely and sharply, and it has
many zeros (see Figure 2). So it looks more difficult to get an appropriate model directly for the predic-
tion of the series than that of the yearly averaged sunspot numbers. We then focus on a series of annual
extreme values of the daily sunspots, and we consider the problem that the series has a similar model like
that of the yearly sunspot numbers.
     In Section 2 we treat of a series of annual maximum sunspot numbers obtained from the daily aver-
aged sunspot numbers (for the period 1 January 1849 through 1 December 2010), and we consider the
estimation of a probability distribution function and the prediction of the annual maximum data based on
an AR model. Also in Section 3, we focus on a series of annual minimum sunspot numbers obtained
from the same daily averaged sunspot numbers, and consider the estimation of a distribution function
and the prediction of the data.  
     This paper is supported by the computer software Mathematica V8.0 and its application Time Series
Pack for Mathematica ([5]).
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2. Annual maximum data of the daily sunspot numbers

We deal with annual maximum  sunspot numbers, which is the block maximum (extreme value) data
obtained from the daily sunspot numbers. The series is plotted in Figure 3 from 1849 to 2010. It also
seems to oscillate with the period of 11 similar to that of the yearly averaged sunspot data.
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           Figure 3. Annual maximum sunspot numbers from 1849 to 2010 with minimum 20 and maximum 355.

We  fit  a  quadratic  function  of  time  x  to  the  series.  The  quadratic  polynomial  is  {10.368+ 0.026x
-0.0001 x2}. We remove the trend and get the residuals by subtracting the trend from the data. Then we
fit the residuals to a stationary time series model. Its sample correlation and sample partial correlation
functions are plotted in Figure 4a-b. The decaying behavior will imply that the series is stationary. 

             Figure 4a. The correlogram of the annual maximum sunspot numbers.
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             Figure 4b. The sample partial correlation function of the series.

We can model the series as observation from the AR model, and the smallest AIC model is AR(9). It is
seen that the maximum likelihood estimates of the AR(9) parameters are given by 
                                   
   8a1, a2, ...., a9< = {0.870, -0.076, -0.241, -0.035,  -0.144, -0.192, 0.009, -0.042, 0.26}, 
                         
                          s2 = 2.40 .

An AR model of order p is defined by 

         Xt = a1 Xt-1 + a2 Xt-2 + ....+ ap Xt-p + et,  

where {et } is white noise with mean zero and variance s2 (see, for example, [2], [4], [6]).

The parametric estimate of the spectral density based on the AR(9) model is shown as a solid curve
together with a sample spectrum in Figure 5 . 
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               Figure 5. Sample spectrum and the spectral density based on the AR(9) model.

To test the adequacy of the model we calculate the residuals of the fitted AR(9) model and the correlo-
gram of the residuals. The correlogram of the residuals shown in Figure 6 suggests that the residuals
behave like white noise. 
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               Figure 6. The Correlogram of the residuals and the 95% bounds.

In  order  to detect  volatility (conditional  heteroskedastic)  we look at  the  correlogram of  the  squared
residuals. From Figure 7 there is no evidence of serial correlation in the squared values since the correla-
tion function falls within the 95% bounds. The AR(9) model also passes the portmanteau test because
the portmanteau statistic is 32.49 against the 95% quantile of the Chi-square distribution with freedom
31 is 44.99. Hence the AR(9) model is appropriate for the series. 

               Figure 7. The Correlogram of the squared residuals and the 95% bounds.

Then  we  use  the  fitted  model  AR(9)  to  forecast  the  future  values.  The  values  of  AR-parameters
a2, a4, a7, a8  of the AR(9) model are very small, but we use them for the prediction. We calculate
the best linear prediction up to 25 time steps ahead based on the series and the model AR(9) :

      {96, 159, 203, 204, 180, 136, 101, 68, 55, 61, 87, 129, 170, 196, 196, 175, 140, 105, 82, 75, 

   84, 106, 137, 165, 181}.

The prediction of the annual maximum value for 2011 is 96, but the true value is 136.
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                                Figure 8. Time plot for 25 predicted values.

We plot the data along with the next 25 predicted values in Figure 9. From Figure 8 it is seen that the
next peak of the annual maximum sunspot data is around in 2014 with a sunspot number 204.
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                   Figure 9. Time plot with last 25 years predicted values (dotted line)

Next we consider the estimation of a probability density function of the residuals. It is seen that the
density function of the residuals is estimated by a generalized extreme value (GEV) distribution with
parameters {m, s, x} = {-0.637, 1.526, -0.197} which has the form

  GHxL = Exp :- B1 + x J x-m
s

NF−
1

ξ >,

 defined on the set {x : 1 + ξ I x−µ

σ
M > 0}, where  -¶ < m < ¶ , s > 0 and -¶ < x < ¶. (see [2], [4], [6])

Its density function is plotted in Figure 10 with a histogram of the residuals.
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                 Figure 10. Histogram of the residuals of the AR(9) model and the density plot 

                                 of the GEV distribution with {a, b, m} = {-0.637, 1.526, -0.197}.

The corresponding density function estimate seems to be almost consistent with the histogram of the
data. It is seen that the GEV distribution model is adequate for the data. This is confirmed by the stan-
dard diagnostic graphical check of the quantile plot shown in Figure 11 and also by 6 statistical goodness
of fit tests in Table 1.

                Figure 11. Quantile plot for GEV distribution function fitted to the residuals.

                 Table 1.

Statistic P‐Value

Anderson‐Darling 0.263 0.963

Cramér‐von Mises 0.036 0.951

Kolmogorov‐Smirnov 0.038 0.970

Kuiper 0.075 0.845

Pearson χ
2

17.95 0.265

Watson U
2

0.036 0.859
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3. Annual minimum data of the daily sunspot numbers

Similar to the annual maximum sunspot numbers in Sec.2, we also consider the modelling of an annual
minimum sunspot numbers obtained from the daily sunspot numbers. The series is plotted in Figure 12
from 1849 to 2010 and the histogram is in Figure 13. It also seems to oscillate with the period of 11. But
we should note that the series has many zeros (about 66.7%) and a maximum 86. Then the graph is
fluctuating sharply.
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                        Figure 12. Annual minimum sunspot numbers from 1849 to 2010.

                       Figure 13. Histogram of Annual minimum sunspot numbers.

Its sample correlation and sample partial correlation functions are plotted in Figure 14a-b. The decaying
behavior seems to imply that the series is also stationary. 
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               Figure 14a. The correlogram of the annual minimum sunspot numbers.

               Figure 14b. The partial-correlogram of the annual minimum sunspot numbers.

We can model the series as observation from the AR model, and the smallest AIC model is AR(13).  It is
seen that the maximum likelihood estimates of the AR(13) parameters are given by 

      8a1, a2, ...., a13< = {0.674, -0.117, -0.083, 0.008, -0.085, 0.010,

                                       0.089, -0.092, 0.085, 0.269, 0.054, 0.047, -0.027}, 

                              s2 = 1.579 .

The parametric estimate of the spectral density based on the AR(13) model is shown as a solid curve
together with a sample spectrum in Figure 15 . 
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                   Figure 15. Sample spectrum and the spectral density based on the AR(13) model.
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To test the adequacy of the model we calculate the residuals of the fitted AR(13) model and the correlo-
gram of the residuals. The correlogram of the residuals shown in Figure 16 suggests that the residuals
behave like white noise. 

                     Figure 16. The Correlogram of the residuals and the 95% bounds.

In order to detect volatility we look at the correlogram of the squared residuals. From Figure 17 there is
no evidence of serial correlation in the squared values since the correlation function almost falls within
the 95% bounds except at lag 11. The AR(13) model also passes the portmanteau test because the port-
manteau statistic is 22.22  against the 95% quantile of the Chi-square distribution with freedom 27  is
40.11.  Hence the AR(13) model is appropriate for the series.

                 Figure 17. The Correlogram of the squared residuals and the 95% bounds. 

Therefore we use the fitted model AR(13) to forecast the future values. The values of AR-parameters
a4, a6  of the AR(13) model are very small, but we use them for the prediction. We calculate the best
linear prediction up to 25 time steps ahead based on the series and the model AR(13) :

   {6, 21, 18, 8, 1, 0, 0, 0, 0, 0, 2, 8, 13, 11, 6, 1, 0, 0, 0, 0, 1, 4, 8, 10, 8}.

The prediction of the annual minimum value for 2011 is 6, but the true value is 0.
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                              Figure 18. Time plot for 25 predicted values.

We plot the data along with the next 25 predicted values in Figure 19. From this result and Figure 18 the
next peak of the annual minimum sunspot data will be in 2012 with a sunspot number 21.
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                     Figure 19. Time plot with last 25 years predicted values (dotted line)

Here we consider the estimation of a probability density function of the residuals. It is seen that the
density function of the residuals is estimated by a Laplace distribution with parameters {m, b} = {-0.076,
0.981} whose density function is

  gHxL = 1
2 b Exp :- Hx-mL Sign@x-mD

b
>.

The function is plotted in Figure 20 with a histogram of the residuals.
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               Figure 20.  Histogram of the residuals of the AR(13) model and the density plot of 

                                 the Laplace distribution with {m, b} = {-0.076, 0.981}.

The corresponding density estimate seems to be almost consistent with the histogram of the data. The
standard diagnostic graphical check of the quantile plot is shown in Figure 21 and 6 statistical goodness
of fit tests are given in Table 2. They do not show that the Laplace distribution model fits well to the
data.

               Figure 21. Quantile plot for the Laplace distribution function fitted to the residuals.

                Table 2.

Statistic P‐Value

Anderson‐Darling 0.656 0.596

Cramér‐von Mises 0.089 0.641

Kolmogorov‐Smirnov 0.066 0.462

Kuiper 0.111 0.228

Pearson χ
2

30.20 0.011 *
Watson U

2
0.087 0.346
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Conclusions
We have considered a statistical time series modelling of the extreme values of a daily averages of the
International relative sunspot number. We focused on two time series of annual maximum and minimum
sunspot numbers, and individually we considered a fitting of an extreme value distribution function to
the residuals derived from an AR model. The AR(9) model was fitted to the series, and it showed that the
next peak of the solar cycle will be around in 2014 with a sunspot number of 204. This result is almost
consistent with the result for the yearly averaged sunspot number given in Tanaka[7]. Also we showed
that the GEV (generalized extreme value) distribution function was fitted well to the residuals obtained
from the AR(9) model.
   On the series of annual minimum sunspot numbers, we have fitted the AR(13) model to the series.
From the best linear prediction based on the model AR(13), it is seen that the next peak will be around in
2013 with a sunspot number 21. To the residuals obtained from the AR(13) model not a GEV distribution
but a Laplace distribution was fitted better. But the result was not adequate because the model did not
passed one of goodness of fit tests (Pearson c2). Therefore finding a best distribution function for the
annual minimum sunspot numbers must be a future work for us.  

Appendix
We here consider a question that there is a relationship between the series of the yearly averaged sunspot number (Figure
A1) and the famous series of annual number of the Lynx, or not. The series of Lynx (Figure A2) has been also modeled by
many researchers (see, for example, Moran[8], Pourahmadi[9]). The Lynx  data seems to oscillate with a period of 10
(9.82 year) although the sunspot numbers has a period of 11 (11.42 year). In order to make the variance more uniform,
taking the logarithm of the data and subtracting out a mean, we can get an AR(12) model for the Lynx data (see He[5],
p.154). On the other hand, the series of the yearly sunspot data with the same time interval is fitted by an AR(9) model
(see Tanaka[7]). Further we tried to calculate the sample cross-correlations between the two series, but we could not find
clear relations. 
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                         Figure A1. The yearly averaged sunspot numbers from 1700 to 2011.
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              Figure A2. The number of lynx trapped annually in northwest Canada from 1821 to 1934.
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