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Abstract. In this paper we provide a proof of the conjecture for the asymp-
totic order of the expected mean length of excursions for some ellipsoidal
processes with a scale mixture of normal (SMN) distribution whose mixing
distribution is the generalized Gamma distribution, which was presented in
the previous paper of Tanaka [15]. It is seen that the L'Hopital's rule and the
Abelian theorem for the two-sided Laplace transforms are useful to evaluate
the asymptotic order in the proof.
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1. Introduction

For the zero-mean stationary Gaussian process X; with autocovariance
v(h) in continuous time the order of the expected mean length of excursions
above level u is given by O (u~') when u is sufficiently large (see, for exam-
ple, Kedem [8], p.138). It is also seen that in the process having the Pearson
Type VII distribution its order of the length of excursions in terms of u is
O@), that is, constant in u (Tanaka and Shimizu [14]). There are papers
extended the results to other stationary ellipsoidal processes which have the
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Laplace distribution, the generalized Laplace distribution and the Logistic
distributions. In the previous paper of Tanaka [15], we have given a conjec-
ture for the case of the stationary ellipsoidal process with a generalized
Gamma distribution as the mixing density function, which is an extension of

the case for the generalized Laplace distribution; the order of the expected
v
mean length of excursions above level u will be given by O( u 1+ ), where y

is a scale parameter of the generalized Gamma distribution. As the special
cases we can derive that if we set y — 0, then we have the case of the Pear-
son Type VII distribution, O(u~") = O(1); if y = 1, the cases of the general-
ized Laplace distribution and the logistic distribution, O(u~'?); and if y —
oo, then the case of the Normal distribution, O(u™").

The objective of this paper is to provide a proof of the conjecture. The
L'Hopital's rule and the Abelian theorem for the two-sided Laplace trans-
forms are useful to evaluate the asymptotic order in the proof.

2. Definition and Notations

Following the previous paper (Tanaka [15]), we shall suppose throughout
that {X(?)} is a stationary zero-mean and unit-variance ellipsoidal process
with the probability density function f(x) and the autocorrelation function
p(h) which is twice differentiable at # = 0. An expected mean length of excur-
sions above level u discussed in Tanaka and Shimizu ([12], [14]) and Tanaka
([13], [15]) for the discrete time ellipsoidal process is the following ratio of
the two integrals:

“fx)d
L(N) = J, S dx o@D

f Newry x2+ 2 = )dxdt

The continuous time formula of (2.1) is also given as

ﬂfuoof(x) dx
V —pd(0) fomf(\/x2 +u? ) dx

limy_,. I, (N) = (2.2)

= A(u), say.
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Particularly when f(x) is a standard normal N(0,7) density and ® is the distri-
bution function, we have the well-known result such that

27 [1-P(u)]

V =p2(0) exp (-5 u?)

o 2z I
—0 0 u as u — co.

(see (a) in Problem 15 of Kedem [10]). Then it is interesting to estimate the
order of smallness of A(u#) when u—co for ellipsoidal processes with a non-
Gaussian distribution function f{x).

A®) = (2.3)

Let H(u) be a power function of u with a negative order, i.e.
Hw)=Cyou™® for a >0, Cy > 0. If a function G(u) ~ H (u) as u — oo, then
H (u) is called the asymptotic order function of G(u) with the order (-«)
when u —»oo. For example, from (2.3) the asymptotic order function of 4(u)
for the Gaussian process is

|_2 1
H(u) = :0% m (2.4)

and its order is (-1).

To consider the limit of the ratio in (2.2) when u—oo, we introduce the
completely monotonic functions, because almost ellipsoidal density func-
tions are completely monotonic (see Andrews and Mallows [1]). We say that
the function f(x) is completely monotonic in [0, co) if it satisfies
(=¥ f®(x) = 0 for 0 <x < co. Bernstein's theorem (see Widder [17], Theo-
rem 19-b) shows that if f(x) is completely monotonic, f{x) is expressed as the
Laplace transform of some function () such that

fo = [Te™ da)
= [Te 6 dy, (2.5)

where «a(t) is bounded and non-decreasing in [0, co) and absolutely continu-
ous, i.e. d a(t) = 6(t)dt. Furthermore the density function f{x) in (1.5) can be
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also expressed by a scale mixture of normal distribution (SMN) with a mix-
ing function G(s), or Mellin-Stieltjes transform of G(s) with the kernel
N, 1), i.e.

f0= [ =T dae

= |y = e T g ds, (2.6)
x2

where 7 = > and G(s) is an absolutely continuous and d G(s) = g(s)ds.
From (2.5) and (2.6) we have

(2.7)

_ 1P 1
ay mg(,)-

For example, in the case of the Gaussian process (when f{7) is the density of
standard normal distribution), we have G(s) = U(s-1) = 0 (s<1), =1 (s>
1), and then g(s) = d(s-1) (Dirac's delta function).

Using the well-known L'Hospital's rule (see Hardy [8] and Tichmarsh
[16]), we can derive the following lemma (see Tanaka [15]).

Lemma A. Let p(x), q(x) and r(x) be the real-valued continuous and
differentiable functions on some neighborhood [a, oo) of infinity. Suppose
that r(x) q(x) # 0, q' (x) # 0 for x € [a, ), and lim;, p(x)= 0,
limy 500 7(x) g(x) =

If (i) there exists constant C; > 0 such that limy_,« r(xp)q—()f)(x) =C
ie. p:(x) ~C;r(x) as x - oo
g’ (x)
(ii)  limye r’(x)—ql(x) = C3, where Cj is aconstant,
r(x) g " (x)
then there exists a constant C, > 0 such that limy_ . _p&) =C,,
r(x) q (x)

pE)

7 ~Corr(x) as x - oo,

ie.
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where C, = Cr_ addition, if C; =0 in the condition (ii), then

1+C;
Py  p X e
gx) T g BT

Corollary A. Suppose that r(x) =x% (a # 0) in Lemma A.
If q(x) satisfies the condition (i) and

Y . qx)
(ii) limy 0 ST 0,
then
P pl@
g T g PrT™

Note that if 7(x) = x* (a = 0), the condition (ii) of Lemma A is always holds.

Applying Lemma A (or Corollary A) to the ratio A(u) of (2.2), the partial
differentiation with respect to # and taking the limit as # —oco will lead the
following result (see Tanaka [15]).

Theorem A. Suppose that f(x) is a scale mixture of normal distribution
(SMN) with a mixing density function g(a) and it is expressed by (2.6). Let
A(u) be the expected mean length of excursions above a level u in (2.2) such
that, for some d>0),

fuoof(x) dx
foooe‘% g(s)ds

Aw) = ——2Z ( (2.8)

vV =p9(0)

=0w™),

as u—oco. If d> 0 and g(s) satisfies either

0o _;_Zx d
lim >0 f‘)f] %z(s) - =0, (2.9)
u? f() e g(s)ds

N

or
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mf(x) dx
lim, [j;uw =0, (2.9)
then, as u —oo,
2r S )
A(u) ~ - 2.10
=00 (u e s g ds =10

= B(u) , say.

Furthermore if A(u) = O(1), then (2.3) always holds.

We should note that these results are modified versions of the previous
results given by the author (Lemma and Theorem in Tanaka [13]). The ratio
B(u) in (2.10) can be expressed in terms of the Laplace transforms such that

Bu) =

o (fomf‘(%f’&](r)afz Cen
u

vV =p2(0) fo“’e-(%)’ 6,(t) dt

where &;(t) = 7 -1 = ¢! -1
l(t) = \/77—; g(t ) and 92(0 =1 g(t )

From the Laplace transform formula (2.11) we may evaluate the asymp-
totic order of A(u) of the scale mixture of normal distribution f(x) by using
the well-known Abelian theorem for the Laplace transform (see, for exam-
ple, Bingham, Goldie and Teugels [2], Widder [17]). When f{x) is a normal
density function, B(u) is simpler than 4(u) and it is easily seen that B(u) is of
order 1/u. We can also use Theorem 1 for the evaluations of the asymptotic
order of A(u) for some non Gaussian distribution, such as the generalized
Laplace distribution, the Pearson Type VII distribution, the Logistic distribu-
tion and the inverse Gauss distribution as a mixing function of the SMN (see
Examples 1 to 5 in Tanaka [15]).
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3. Main Results

We now consider the mixing density function such that the density of the
generalized Gamma distribution, for @ >0, >0,y > 0,

a-1

2 = gEmsgr ¢ (>0) G

(see Johnson, Kotz and Balakrishnan [9], a Gamma distribution is the special
case when y = 1). It is seen that the mixing density of the Pearson Type VII
distribution may be asymptotically equivalent to that of (3.1) when y—0. The
generalized Laplace, the logistic and the density function of the inverse
Gauss distribution have the same kind mixing function of (3.1) with y = 1.
Also when y—o0, the mixing function of (3.1) will be d(a-1) (Dirac's delta
function) and then this asymptotically corresponds to the case for the stan-
dard normal distribution. However it is notable that the general formulas of
A(u) in (2.3) or B(u) in (2.4) for this mixing density are not expressed by the
simple functions and are very difficult to estimate their asymptotic orders
directly. For example, if we set @ =2, =1 and y = 2, then the SMN density
function is given by

75— (3 T3] HypergeomericPFO[ (), {5, 5). =37 | +
257 (—3 F[%] HypergeometricPFQ[{}, {%, %}, —1'—4] +
v2rx xHypergeometrt’cPFQ[{}, {%, %}, —L]Sign[xj)),
where HypergeometricPFQJ.] is the generalized hypergeometric function
,» F,(a; b; x) (see Gradshteyn and Ryzhik [8]). The graphs of the mixing density

function (the generalized Gamma distribution) and its SMN distribution
density function are shown in Figure 1 and Figure 2.



Information Science and Applied Mathematics, Vol. 15, 2007, B.L.L.S., Senshu University

0.5 1 1.5 2 2.5 3

Figure 1. Graph of the mixing density function, the generalized Gamma
distribution with @ =2, =1 and y = 2.

-4 -2 2 4

Figure 2. The graph of the density function of the SMN distribution with
parameters « =2, =1 and y = 2.

By the way, using Theorem A above and an Abelian theorem for two-sided
Laplace transforms due to Balkema, Kluppelberg and Resnick [3], we can
prove the following main theorem, which was the conjecture given in
Tanaka [15] for the asymptotic order function of the process with the general-
ized Gamma distribution as the mixing function.

Theorem. Let the process X; have the SMN (scale mixture of normal)
distribution f(x) with the mixing density function g(s) ~ go(s), as s—oo, where
go is a density function of the generalized Gamma distribution of (3.1). Then
the asymptotic order function H(u) of A(u) in (2.2) is given by, for > 0 and
>0,
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Hy = —27__ (Lo %7 (32)

V-pd) 77

A proof of this theorem will be given in Appendix below. As the special
cases of (3.2) we have the following.

Corollary. In (3.2) of Theorem, asymptotically we have
(i) when y=1, Hu) = Ou™'7?),

(ii) when y — co, H(u) = Ou™).

We note that the result (i) of Corollary corresponds to the cases of the general-
ized Laplace distribution and the logistic distribution, and also (ii) is the
case of the Normal distribution. By the way, if we set y — 0 in (3.2), the

1

asymptotic order will tends to zero, but the constant term (27]7) 2000 will
not be bounded. Hence we can not directly obtain the case of the Pearson

Type VII distribution from (3.2) in Theorem.

Appendix
Proof of Theorem

From Theorem A, in order to evaluate 4(u) asymptotically we may con-
sider B(u) in (2.11) which has two Laplace transforms, the part of the numera-
tor and that of the denominator. So we may use the Abelian theorem for
two-sided Laplace transforms due to Balkema, Kluppelberg and Stadtmulle
[4]. We shall give some preliminaries about self-neglecting functions which
are needed in their theorem.

A function s(z) defined on a left neighborhood of a point ¢, is self-neglecting
(or Beurling slowly varying) if it is strictly positive and satisfies

s(t+x5())/s(t) - last - to, (A. 1)

uniformly on the bounded x intervals.
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Note that if 7, < oo and both s and s vanish at #., then s is
self-neglecting. See Balkema, Kluppelberg and Resnick [3] for further
information.

The function ¥(t) is an asymptotically parabolic function if @ (¢) exists and
is continuous and positive and also satisfies that

_ 1
s() = V@)

is self-neglecting. In this case s() is called the scale function of .

Let ¢ be asymptotically parabolic with scale function s. Then a positive
function /4(?) is flat for ¢ if it satisfies

h(t +xs@)/h@t) » last - to, (A.2)

uniformly on the bounded x intervals (See [4], p.387).
The conjugate transform of y is defined by

Y (€) = Sup(éx — Y (x)). (A.3)

Here we consider an integrable nonnegative function g on the real line with a
very thin upper tail in the sense that

g(t) >0 (t> ¢y, for some ty), (A. 4)

gt)e” -0 ast— oo. (A.53)

Theorem B. Let g(t) satisfy (A. 4) and (4. 5). If g(t) ~h(t)e Y (as t—
), Where Y(t) is asymptotically parabolic and h(t) is flat for ¢, then the
two-sided Laplace transform of g(t) satisfies

[ e g0 dt~p@)e? D (as o), (A.6)
where ¥ is convex conjugate of ¢, s flat for ¢* and

B (1) =N2 s(t) h(t) (A.7)
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with s(t) is the scale function of ¥, and 7 and t are conjugate variables with

r=y¢'(t) and t =) (7).

(See Balkema, Kluppelberg and Stadtmuller [4], Theorem C).

Now we assume that the process X, has the SMN distribution f{x) with the
mixing density function g¢ (s) which is the generalized Gamma distribution
given in (3.1). Then we have

f0) = 7 = e T g0 @ ds, (A.8)

The two-sided Laplace formula expression for f{u) is given as, putting 7 =

2
w

)

fa) = [ e 0 (n)dt,

where 6, (f) = O when ¢ = 0, and whent < 0,

61 ()= = (77 g (=1/1) (A.9)

I-«

— 1 (—t)_3/2 Yy (=0
\V2n C(afy) B

e_(_t/ﬁ)iy
(@>0,>0,y>0).
Hence we can set

0, ()= hy (e VO, (A. 10)

_ i ey 7(_t)l—w
where h(t) = \/T—n‘(_t) / Temp

and Y1) = (=1/B)” (1 < 0).

11
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Then it is seen that #;(z) is log-concave and its two-sided Laplace transform
Lé;(t) = f(u) has a nondegenerate interval of existence.

In this case the point 7, is zero, and then we can show that y(t) is asymptoti-
cally parabolic and also h(t) is flat for ¢.

For if we set s(t) =1 / v Y" (), then s(z) must be self-neglecting. This is
because that both

_ 1 _nl+y2
s(t) = NEETr (—t)' ™7 (A. 11)

and the derivative

) = _ 0y
SO = =35y am (A-12)

vanish at 7, = 0 for all B > 0 and y > 0. Therefore ¥(t) is asymptotically
parabolic. Also we see that A(?) is flat for i, since

Me+xs@) _(,___(07x m%% (A.13)

h( VB y U +y)

Therefore the conditions of Theorem B holds, and then we can apply
Theorem B to the density function of the scale mixture of normal
distribution whose mixing distribution is the generalized Gamma
distribution. Thus from (A. 6) in Theorem B, we have

fa) = [" e g 0dt ~ pi(m)e’ ™, (A. 14)

where

B (1) =N2 st (1)

L 2 1 =32 y(=p'™
\/E{VBW(HY) (=07 }{\/ﬁ( v F(O//y),m}

¥ U+y) L U-2a+y)
ﬁwwumwna(ﬂz : (A. 15)
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and

2
1

g () =D+ D(E)T (A. 16)
This is because that from (A. 3),

Y (€) = Sup(éx — ¥(x)) = &x™ = Y(x"), (A. 17)

where x* = —(ﬁT) 7T ,

and that from (A.7), we have

0= (55) " (A.18)

In a similar way we can obtain the two-sided Laplace formula expression
for denominator of B(u) in (2.11), defined by D(u), putting 7 = —2 , such that

D) = [~ €' 6, (1) dt,
where 6, (f) = Owhent = 0 and when t <0,
6, (1) = (=)' go(—17") (A. 19)

_pl-a —
= (-0 fapp e

(>0,6>0,v>0).
Hence we can set

6, (1) = hy (1) e VO, (A. 20)

_ 1-a
where hy(t) = (1) ry(iv/;)wv

and ¥ (¢) = (=t/B)” (t < 0).
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Thus from (A. 6) we also have

Dw) = [~ e 6 () dt ~ Br(r)e? @,
where

B (1) =V 2 s(t) hy(0)

V2 { = 9"} (-

By (1+y)

V2 ¥ (1+y)
By A+ TI$]

(_t)g Q-2a+y)

1
T )—m
yB ’

Therefore, from (A.15), (A.18) and (A.22) and by

and (—¢t) = (

_ 2r Q)
bW = =0 (w57 )

~ 2z ( A1) )
V—p2(0) ‘u P2A7)

_ N2 7!

e

__2au
V=p2(0)

u?

1
)2(7+1)
2y B

(

1
) 2(+1)

V2r

T N=00)

1
2y pr

(

I (a/y) B
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(A.21)

y(=H'*

}

(A. 22)

(2.11) we have, as u —oo,

(A.23)

A
+1
u 7,
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since T = u? /2. This completes the proof of Theorem.

Conclusion

We have provided a proof of Theorem for the asymptotic order of the
expected mean length of excursions for the processes with a scale mixture of
normal (SMN) distribution whose mixing distribution is the generalized
Gamma distribution, which was the conjecture presented in the previous
paper of Tanaka [15].

Acknowledgement
The work of the author was supported in part by the research expense of
Senshu University in 2006.

References

[1] D.F.Andrews and C.L.Mallows, 1974, "Scale mixtures of normal
distributions", J.R.Statist., Soc.B36, 99-102.

[2] N.H.Bingham, C.M.Goldie and J.L.Teugels, 1987, Regular variation,
Cambridge University press.

[3] A.A.Balkema, C.Kluppelberg and S.I.LResnick, 1993, "Densities with
Gaussian tails", Proc. London Math. Soc.(3) 66, 568-588.

[4] A.A.Balkema, C.Kluppelberg and U.Stadtmulle, 1995, "Tauberian results
for densities with Gaussian tails", J. London Math. Soc.(2) 51, 383-400.

[5] K.T.Fang and T.W.Anderson, 1990, Statistical inference in elliptically
contoured and related distributions , Allerton Press Inc.

[6] K.T.Fang, S.Kotz and K.W.Ng, 1990, Symmetric Multivariate and
Related Distributions , Chapman and Hall.

[7] L.S.Gradshteyn and [.M.Ryzhik, 1994, Table of Integrals, Series and
Products, Academic Press, San Diego.

[8] G.H.Hardy, 1952, 4 course of pure mathematics, Cambridge University
press.

[9] N.L.Johnson, S.Kotz and N.Balakrishnan, 1994, Continuous univariate
distributions volume 1, second edition, John Wiley & Sons, Inc., New York.
[10] B. Kedem, 1994, Time Series Analysis by Higher Order Crossings,
IEEE Press.

[11]J. Korevaar, 2004, Tauberian Theory, Springer-Verlag, Berlin.

[12] M.Tanaka and K.Shimizu, 2001, "Discrete and continuous expectation
formulae for level-crossings, upcrossings and excursions of ellipsoidal
processes", Statistics & Probability Letters, Vol.52, 225-232.

[13] M.Tanaka, 2004, "A note on the calculation of certain limits and their

15



16

Information Science and Applied Mathematics, Vol. 15, 2007, B.L.L.S., Senshu University

orders", Information Science and Applied Mathematics, Vol.12,

[14] M.Tanaka and K.Shimizu, 2004, "Asymptotic behavior of the expected
length of excursions above a fixed level for some ellipsoidal processes",
American Journal of Mathematical and Management sciences, Vol.24,
279-290.

[15] M.Tanaka, 2006, "Asymptotic order of the expected length of
excursions for the processes with a Scale mixture of normal distribution",
Information Science and Applied Mathematics, Vol.14, 1-20.

[16] E.C.Titchmarsh, 1939, The theory of functions, second edition, Oxford
University Press, New York.

[17] D.V.Widder, 1972, The Laplace Transform, Princeton University press.



	本文_Part01.pdf
	本文_Part02
	本文_Part03
	本文_Part04
	本文_Part05
	本文_Part06
	本文_Part07
	本文_Part08
	本文_Part09
	本文_Part10
	本文_Part11
	本文_Part12
	本文_Part13
	本文_Part14
	本文_Part15
	本文_Part16

