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Abstract. The purpose of this paper is discussing the estimation of a sample cross correlation function among the time

series, global and regional annual average sea surface temperature (SST) deviations of the Indian Ocean, the North

Pacific, the South Pacific, the North Atlantic and the South Atlantic. In order to show if a cross correlation estimate is

significantly different from zero, the prewhitening one of the time series is very important. We use SARIMA model

fitting for the prewhitening and estimate the cross correlation functions. Furthermore, we consider the lagged linear

regression model with ARIMA errors by using the series of SST as a leading indicator of the global air temperature.
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1.  Introduction

   In the previous paper (Tanaka [7]), we have discussed the cross correlation analysis for the estimation of a sample

cross correlation function (CCF) between two series. In this paper we shall discuss the estimation of CCF between the

global air temperature and the sea surface temperature (SST) as a continuation of the paper [7] .

2.  Cross Correlation Analysis and Prewhitening

2.1  Global Air Temperature and Global Sea Surface Temperature  

   Both the world annual average air-temperature and the world annual average oceanic-surface-temperature deviations

are going up, and it turns out in the past 100 years that +0.55 degrees for the air temperature, and +0.3 for the sea

surface temperature are rising (both series, 1891-2019, were obtained from Japan Meteorological Agency [5], and see

Hansen [3]). Each average become the maximum in 2016 shown in Figure 2.1.1(a). Although the strong correlation is

seen at the lag 0 from the graph of the sample cross correlation function of the two original series in Figure 2.1.1(b),

the true correlation coefficient may not be obtained under the influence of a trend component. 

        

    Figure 2.1.1. (a) global air temperature deviations (top left-side) and global sea surface temperature deviations

(bottom),  (b) the sample CCF between the two series (right-side)
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   Then we should need prewhitening the two series to estimate the true cross-correlation (Shumway [6] and Tanaka

[7]), and we employ an ARIMA model fitting to each series for the prewhitening. Since each fitted model is ARIMA

(1,1,3) and p-value in Ljung-Box test of each residuals is 0.7577 and 0.7047 below, we can say that the each residuals

of the model will be white noise (see for example, Blockwell and Davis [1]). Figure 2.1.2 shows the two residuals of

the ARIMA(1,1,3) models and the sample cross-correlation function CCF between the two series. There are significant

correlations at lag 0 (+0.8), at lag 1 (+0.25) and at lag 18 (+0.24) which indicates that the SST might lead the global air

temperature by one year and 18 years. 

  Series: tempy_ts  

  ARIMA(1,1,3) with drift 

  Coefficients:

                 r1        ma1         ma2         ma3      drift

          -0.9285  0.5923  -0.6401  -0.3922   0.0081

   s.e.   0.0829  0.1094   0.0927    0.0782   0.0025

            Ljung-Box test

  data:  Residuals from ARIMA(1,1,3) with drift

  Q* = 2.624, df = 5, p-value = 0.7577

  Series: ssty_ts 

  ARIMA(1,1,3) with drift 

  Coefficients:

                   r1          ma1        ma2        ma3      drift

              -0.9413  0.8695  -0.6248  -0.5827  0.0056

       s.e.   0.0434  0.0938   0.1008   0.0914   0.0021

   sigma^2 estimated as 0.004741:  log likelihood=162.85

  AIC=-313.69   AICc=-313   BIC=-296.58

             Ljung-Box test

  data:  Residuals from ARIMA(1,1,3) with drift

  Q* = 2.9693, df = 5, p-value = 0.7047

                        

    Figure 2.1.2. (a) Prewhitening series of the tempy_ts and of the ssty_ts (left-side)   (b) The sample CCF between the

two series (right-side)

     Next we consider the following lagged linear regression model with ARIMA errors by using the series of SST as a

leading indicator of the global air temperature. 

                Tt  Β0  Β1 St  Β2 St1  Β3 St18  Xt,                                        (2.1)

 

where Tt is the global air temperature and St is the global SST in year t, and Xt is assumed white noise with mean zero

and standard error Σ. Using the R package dynlm, the linear model was fitted by ordinary least squares (see [2] and

[6]). The following output for the model (2.1) shows that the parameter coefficients Β0  0 and Β3  0 are accepted in

significance level 0.1. 
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 Call:

 dynlm(formula = tempy_ts ~ ssty_ts + L(ssty_ts, 1) + L(ssty_ts, 18))

 Residuals:

           Min          1Q             Median        3Q          Max 

   -0.118773 -0.032515  0.008488  0.031758  0.127839 

 Coefficients:

                            Estimate      Std. Error    t value    Pr(>|t|)    

 (Intercept)        0.004540   0.009121   0.498     0.6197    

 ssty_ts              1.173657   0.061727  19.014    <2e-16 ***

 L(ssty_ts, 1)     0.102745   0.057580   1.784     0.0772 .  

 L(ssty_ts, 18)   0.011036   0.043472   0.254     0.8001    

 ---

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Residual standard error: 0.04507 on 107 degrees of freedom

 Multiple R-squared:  0.9758, Adjusted R-squared:  0.9751 

 F-statistic:  1436 on 3 and 107 DF,  p-value: < 2.2e-16

Then we can get the fitted model (2.2) using generalized least squares procedure.

                T


t  1.18 St  0.11 St1  X


t ,                                                          (2.2)

where X


t is an AR(2) process with Σ  0.04 and the Adjusted R-squared is 0.986. Also from the Ljung-Box test of the

residuals from AR(2) model, the p-value = 0.287 suggests that the residuals may be white noise. Therefore the lagged

variable St1 will be a sufficient variable to predict the global air temperature series.

 Call:

 arima(x = resid(reg00), order = c(2, 0, 0), include.mean = FALSE)

 Coefficients:

             ar1       ar2

         0.3182  0.2493

 s.e.  0.0857  0.0878

 sigma^2 estimated as 0.00198:  log likelihood = 216.59,  aic = -427.19

 

Ljung-Box test

 data:  Residuals from ARIMA(2,0,0) with zero mean

 Q* = 9.7028, df = 8, p-value = 0.2865

 Model df: 2.   Total lags used: 10

    Figure 2.1.3.  Residuals from ARIMA(2,0,0) model with zero mean, ACF and Histogram of the series.
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2.2  Global Air Temperature and Five Sea Surface Temperatures 

   We here consider the regional annual average sea surface temperature (SST) deviations of the Indian Ocean, the

North  Pacific,  the  South  Pacific,  the  North  Atlantic  and the  South  Atlantic  (1891-2019)(Figure  2.2.0)  which  are

obtained from Japan Meteorological  Agency [5].  In  order  to  show if  a  cross  correlation  estimate  is  significantly

different from zero, the prewhitening one of the time series is very important. We also employ SARIMA model fitting

for the prewhitening and estimate the cross correlation functions (see Shumway [6] and Tanaka [7]). Furthermore, we

consider a lagged linear regression model with ARIMA errors by using the series of SST as a leading indicator of the

global air temperature.

   [1] Global air temperature and SST of South Pacific Ocean: 

   We consider the estimation of the cross correlation function between the global air temperature (G-Temp) and the

SST of the South Pacific ocean (see Figure 2.2.1). Prewhitening the two series by fitting ARIMA model, we can

estimate the CCF between the two series. 

            

        Figure 2.2.1.  (a) G-Temp (top) and SST of South Pacific (bottom)       (b) the sample CCF between the two series.

            

      Figure 2.2.2.  (a) Prewhitening series of the G-Temp and of the SST (left-side)   (b) The sample CCF between the

two series (right-side)

   Figure 2.2.2 shows that the sample CCF peaked at lag h = 0 ( Ρxy 0  0.8), at lag h = 1 ( Ρxy 1  0.24) and at lag h =

18 ( Ρxy 18  0.25). These results indicate that the SST might lead the air temperature by one year and 18 years. 

     [2] Global air temperature and SST of North Pacific Ocean:

    Using the similar way of [1], we show the result of the sample CCF between the global air temperature and the
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   Figure 2.2.2 shows that the sample CCF peaked at lag h = 0 ( Ρxy 0  0.8), at lag h = 1 ( Ρxy 1  0.24) and at lag h =

18 ( Ρxy 18  0.25). These results indicate that the SST might lead the air temperature by one year and 18 years. 

     [2] Global air temperature and SST of North Pacific Ocean:

    Using the similar way of [1], we show the result of the sample CCF between the global air temperature and the

 

North Pacific SST.

          

    Figure 2.2.3.  (a) G-Temp (top) and SST of North Pacific (bottom)     (b) The sample CCF between the two

prewhitening series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.53), at lag h = 1 ( Ρxy 1  0.38), and these indicate that the SST

might lead the air temperature by one year. 

     [3] Global air temperature and SST of South Atlantic Ocean:

           

    Figure 2.2.4.  (a) G-Temp (top) and SST of South Atlantic (bottom)     (b) The sample CCF between the two

prewhitening series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.45), and this shows that the SST of South Atlantic Ocean measured

at time t (years) is associated with the temperature deviations at same time t.

     [4] Global air temperature and SST of North Atlantic Ocean: 
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    Figure 2.2.5.  (a) G-Temp (top) and SST of North Atlantic (bottom)     (b) The sample CCF between the two

prewhitening series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.59), and this shows that the SST of North Atlantic Ocean measured

at time t (years) is associated with the temperature deviations at same time t.

     [5] Global air temperature and SST of Indian Ocean: 

            

    Figure 2.2.6.  (a) G-Temp (top) and SST of Indian Ocean (bottom)     (b) the sample CCF between the two prewhiten-

ing series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.61), and the SST of Indian Ocean measured at time t (years) is

associated with the air temperature deviations at same time t.

    In order to check the effect of each SST on the air temperature, we consider a lagged linear regression model with

ARIMA errors by using the SST as a leading indicator of the global air temperature:

           Tt  Β0  Β1 S1t  Β2 S2t  Β3 S2t1  Β4 S2t18  Β5 S3t  Β6 S3t1  Β7 S4t  Β8 S5t  Xt,         (2.3)

                

where the variable Tt  is the global air temperature,  S1t  is the SST of Indian Ocean (ind_ts), S2t  is the SST of South

Pacific (spac_ts), S3t is the SST of North Pacific (npac_ts), S4t  is the SST of South Atlantic (satla_ts), S5t  is the SST

of North Atlantic (natla_ts) and Xt is the ARIMA(0,0,3) errors with mean zero and standard error Σ. At first, assuming

the Xt sequence is white noise, and using the R package dynlm, we will get the following output :

  Call:

   dynlm(formula = tempy_ts ~ ind_ts + spac_ts + L(spac_ts, 1) + 

                    L(spac_ts, 18) + npac_ts + L(npac_ts, 1) + satla_ts + natla_ts)

 



23Cross Correlation Analysis between Sea Surface Temperature and Global Air Temperature

         

    Figure 2.2.5.  (a) G-Temp (top) and SST of North Atlantic (bottom)     (b) The sample CCF between the two

prewhitening series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.59), and this shows that the SST of North Atlantic Ocean measured

at time t (years) is associated with the temperature deviations at same time t.

     [5] Global air temperature and SST of Indian Ocean: 

            

    Figure 2.2.6.  (a) G-Temp (top) and SST of Indian Ocean (bottom)     (b) the sample CCF between the two prewhiten-

ing series.

   The sample CCF peaked at lag h = 0 ( Ρxy 0  0.61), and the SST of Indian Ocean measured at time t (years) is

associated with the air temperature deviations at same time t.

    In order to check the effect of each SST on the air temperature, we consider a lagged linear regression model with

ARIMA errors by using the SST as a leading indicator of the global air temperature:

           Tt  Β0  Β1 S1t  Β2 S2t  Β3 S2t1  Β4 S2t18  Β5 S3t  Β6 S3t1  Β7 S4t  Β8 S5t  Xt,         (2.3)

                

where the variable Tt  is the global air temperature,  S1t  is the SST of Indian Ocean (ind_ts), S2t  is the SST of South
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  Call:

   dynlm(formula = tempy_ts ~ ind_ts + spac_ts + L(spac_ts, 1) + 
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   Residuals:

         Min           1Q           Median        3Q          Max 

  -0.115772 -0.029948  0.008407  0.029849  0.096885 

  Coefficients:

                                Estimate     Std. Error    t value    Pr(>|t|)    

    (Intercept)         -0.002734   0.008171  -0.335    0.73864    

    ind_ts                 0.275675   0.052930   5.208     9.95e-07 ***

    spac_ts               0.141806   0.049337   2.874     0.00493 ** 

    L(spac_ts, 1)      0.051722   0.051207   1.010     0.31486    

    L(spac_ts, 18)    0.066527   0.035253   1.887     0.06199 .  

    npac_ts               0.249737   0.042204   5.917     4.41e-08 ***

    L(npac_ts, 1)      0.030254   0.049741   0.608     0.54439    

    satla_ts               0.167467   0.038268   4.376     2.93e-05 ***

    natla_ts               0.264976   0.029435   9.002     1.31e-14 ***

   ---

   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

   Residual standard error: 0.0454 on 102 degrees of freedom

   Multiple R-squared:  0.9766, Adjusted R-squared:  0.9747 

   F-statistic: 531.1 on 8 and 102 DF,  p-value: < 2.2e-16

   It is seen that the coefficients of Β0 and Β6 may be equal zero in significant level 0.1 and the variables S3t1 should

be deleted on the model (2.3). We have refitted the model using GLS. Then we can get the following best fitted model

(2.4) in terms of the maximum Adjusted R-squared value (0.986). 

          T


t  0.26 S1t  0.14 S2t  0.07 S2t1  0.07 S2t18  0.26 S3t  0.17 S4t  0.27 S5t  X


t,             (2.4)

where X


 is ARIMA(0,0,3) = MA(3) model. The output of the Ljung-Box test and Figure 2.2.7 below suggest that the

residuals from ARIMA(0,0,3) are white noise with Σ = 0.05 since the p-value is 0.268.

 Call:

   dynlm(formula = tempy_ts ~ ind_ts + spac_ts + L(spac_ts, 1) + 

                                                     L(spac_ts, 18) + npac_ts + satla_ts + natla_ts)

  Residuals:

        Min            1Q               Median        3Q         Max 

  -0.112259  -0.030438    0.004423   0.030776  0.100677 

  Coefficients:

                                Estimate    Std. Error  t value    Pr(>|t|)    

   ind_ts                   0.26293    0.04857    5.413     4.00e-07 ***

   spac_ts                 0.14409    0.04844    2.975     0.00365 ** 

   L(spac_ts, 1)        0.07319    0.03885    1.884     0.06239 .  

   L(spac_ts, 18)      0.07482    0.02608    2.869     0.00499 ** 

   npac_ts                 0.26330    0.03283    8.019    1.67e-12 ***

   satla_ts                 0.16591    0.03724    4.455    2.12e-05 ***

   natla_ts                 0.27134    0.02723    9.966     < 2e-16 ***

   ---

   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

  Residual standard error: 0.04506 on 104 degrees of freedom

  Multiple R-squared:  0.9865, Adjusted R-squared:  0.9855 

  F-statistic:  1082 on 7 and 104 DF,  p-value: < 2.2e-16

[2]  residuals

  arima(x = resid(reg2), order = c(0, 0, 3), include.mean = FALSE)

  Coefficients:

             ma1      ma2       ma3

         0.3625  0.2147  -0.1033

  s.e.  0.0919  0.0912   0.0879

  sigma^2 estimated as 0.001619:  log likelihood = 199.02,  aic = -390.03

  Ljung-Box test

  data:  Residuals from ARIMA(0,0,3) with zero mean

  Q* = 8.7878, df = 7, p-value = 0.2683

  Model df: 3.   Total lags used: 10
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    Figure 2.2.7.  Residuals from ARIMA(0,0,3) model with zero mean, ACF and Histogram of the series.

Conclusions

   We have considered the effect of the sea surface temperature (SST) deviations on the global air temperature devia-

tions from 1891 to 2019. The sample CCF between the SST and the air temperature was estimated by use of the cross-

correlation analysis with prewhitening method of ARIMA model fitting.

  (1)  CCF between global air temperature and global sea surface temperature deviations:

   The sample CCF between the two series peaked at lag h = 0 ( Ρxy 0  0.8), at lag h = 1 ( Ρxy 1  0.25) and at lag h =

18 ( Ρxy 18  0.24). These results indicate that the SST might lead the air temperature by one year and 18 years. We

next considered the lagged linear regression model of the air temperature on the SST's. It is seen that the significant

variables are SST and one year lagged SST.

　(2)  CCF between global air temperature and each SST of South Pacific Ocean, North Pacific Ocean, South Atlantic

Ocean, North Atlantic Ocean and Indian Ocean:

   In order to get the effect of the each SST on the global air temperature, we have considered a lagged linear regres-

sion model with ARIMA errors and the independent variables of five SST’s as the leading indicators of the air tempera-

ture. It is seen that the significant variables are five SST’s with lag zero, and SST of the South Pacific Ocean with lags

one and 18 years and also that of North Pacific Ocean with lag one year as the leading indicators.

   It turns out that the global air temperature is strongly subject to the influence of the sea surface temperature. Then,

from what kind of factor is the sea surface temperature subject to strong influence? It  will  be a future subject  to

explore the factor which has given influence strong against the sea surface temperature. 
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