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Abstract. The paper treats of the asymptotic order of the expected mean length
of excursions for some ellipsoidal processes with a scale mixture of normal
(SMN) distribution when the level is sufficiently large, which is the limiting
values of ratios of two functions. It is shown that the Abelian theorem for the
Laplace transforms and the L'Hopital's rule are useful to estimate the asymp-
totic order. A general condition to derive the true asymptotic order of the ratios
1s also discussed.
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1. Introduction

It is known that for the zero-mean stationary Gaussian process X; with autoco-
variance vy (h) in continuous time the order of the expected mean length of excur-
sions above level u is given by O (u™!) when u is sufficiently large (see, for
example, Kedem [8], p.138). It is also seen that in the process having the Pear-
son Type VII distribution its order of the length of excursions in terms of u is
O(u®), that is, constant in u (Tanaka and Shimizu [9]). There is a paper which
extended the results to other stationary ellipsoidal processes which have the
Laplace distribution, the generalized Laplace distribution and the Logistic distri-
butions (for example, Tanaka and Shimizu [11]).

Following the previous paper of Tanaka [10], we shall suppose throughout
that {X(t)} is a stationary zero-mean and unit-variance ellipsoidal process with
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the probability density function f(x) and the autocorrelation function p(h) which
is twice differentiable at h = 0. An expected mean length of excursions above
level u discussed in Tanaka [10], and Tanaka and Shimizu ([9],[11]) for the
~discrete time ellipsoidal process is the following ratio of the two integrals:

" f(x) dx
I,(N) = 1 J =~ . (1.1)
1 1 2 u? P 7
i — f f( X2+ﬁ )dth
P 0
The continuous time formula of (1.1) is also given as
: 7 [T f(x) dx
limy_o 1, (N) = j[; (1.2)

V=pP0) [[7f(Vx2+u2) dx
= A(u), say.

Particularly when f(x) is a standard normal N(0,1) density and ® is the distribu-
tion function, we have

21 [1-P(u)]

A =
() V =p(0) exp {—% u?)

2
=2 (0)

1
- as u — oo,
u

(see (a) in Problem 15 of Kedem [8]). Then it is interesting to estimate the
order of smallness of A(u) when u—co for ellipsoidal processes with a non-Gaus-
sian distribution function f(x).

Let H (1) be a power function of u with a negative order, i.e. H(u) = Co u™®
fora > 0, Cy > 0. If a function G(u) ~ H (i) as u - oo, then H (u) is called the
asymptotic order function of G(u) with the order (- @) when u »co. For exam-
ple, it is seen from (1.3) that the asymptotic order function of A(u) for the Gauss-
ian process is
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and its order is (-1).

To consider the limit of the ratio in (1.2) when u—co, we introduce the com-
pletely monotonic functions, because almost ellipsoidal density functions are
completely monotonic (see Andrews and Mallows [1]). We say that the func-
tion f(x) is completely monotonic in [0,00) if it satisfies (— D fPx) = 0for0 =<
X < oo. Bernstein's theorem (see Widder [13], Theorem 19-b) shows that if f(x)
1s completely monotonic, f(x) is expressed as the Laplace transform of some
function a(t) such that

fis) = foooe‘“da(t)
= fowe‘S*O(t)dt, (1.5)

where a(t) is bounded and non-decreasing in [0, co) and absolutely continuous,
i.e. d aft) = 6(t) dt. Furthermore the density function f(s) in (1.5) can be also
expressed by a scale mixture of normal distribution (SMN) with a mixing func-
tion G(a), or Mellin-Stieltjes transform of G(a) with the kernel N(0,1), i.e.

fo)= [T = e 7 dGla)

_ (e _1 -2 ,
= fo — 7= gla)da, (1.6)

where s = % and G(a) 1s an absolutely continuous and d G(a) = g(a) da. From
(1.5) and (1.6) we have

1‘_3/2

Q) = mg(é). (1.7)

For example, in the case of the Gaussian process (when f(s) is the density of
standard normal distribution), we have G(a) = U(a-1)=0(a=<1),=1(a>1),
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and then g(a) = d(a-1) (Dirac's delta function).

2. Results

Using the well-known L'Hospital's rule (see Hardy [6] and Tichmarsh [12]),
we can derive the following lemma.

Lemma A. Let p(x), q(x) and r(x) be the real-valued continuous and differen-
tiable functions on some neighborhood [a, o) of infinity. Suppose that r(x)
q(x)#0, q'(x) #0 forx € [a, 00), and lim,, p(x)=0, lim .. r(x)g(x)=0.

If (1) there exists constant C; > O such that lim,_,, % = (1,

i.e. —5%~C1r(x) as x - oo,

r'(x) gx) _ C

— = = , where C5 isaconstant,
rx) ' (x) 3 3

(i) limy,e

then there exists a constant C, > 0 such that lim,_, _pX) =y,
r(x) g x)
1.e. ST C, r(x) as x - oo,
g(x) -

where C; = —Q—. In addition, if C3 = 0 in the condition (ii), then

1+C3
p(x) p'x)
g T g BT

Corollary A. Suppose that r(x) = x® (a # 0) in Lemma A.

If q(x) satisfies the condition (i) and

q x) — 0

Gy lime, T8 =
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then
px)  p'(x)
q(x) q'(x)

as x — oo.

Note that if r(x) = x* (a = 0), the condition (ii) of Lemma 1 is always holds.

Applying Lemma A (Corollary A) to the ratio A(u) of (1.2), the partial differ-
entiation with respect to u and taking the limit as u —oco will lead the following
result.

Theorem 1. Suppose that f(x) is a scale mixture of normal distribution
(SMN) with a mixing density function g(a) and it is expressed by (1.6). Let
A(u) be the expected mean length of excursions above a level u in (1.2) such
that, for some a =0,

[Fredx
fooo@‘% gla)da

= 0w ") (2.1

_ 2r
A(u) - \/ _/)(2)(0) [

as u—oo. If @ >0 and g(a) satisfies either

Ooe‘g_iz a)da
limuﬂoo j(;oo 1 ﬁ( ) = 0, (22)
u? fo — e % gla)da

or
, [T dx |
llmuaoo {—u—‘f(T = O’ (2.2)
then, asu —oo,
2r J(x)
A ~ & 23

= B(u) , say.
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Furthermore if A(u) = O(1), then (2.3) always holds.

We should note that these results are modification of the previous results
given by the author (Lemma 1 and Proposition in Tanaka [10]). The ratio B(u)
in (2.3) can be expressed in terms of the Laplace transforms such that

B(u) =

27 [L‘”@—(%)zg[(,)dt | 04
u

vV =p@(0) fo“’f—(%)’ 65(1) d't

where &(f) = "y and &) =t g(t7").

=312 ~
From the Laplace transform formula (2.4) we may evaluate the asymptotic
order of A(u) of the scale mixture of normal distribution f(x) by using the well-
known Abelian theorem for the Laplace transform (see, for example, Bingham,
Goldie and Teugels [2], Widder [13]). When f(x) is a normal density function,
B(u) is simpler than A(u) and it is easily seen that B(u) is of order 1/u, see Exam-
ple 1 below. We can also use Theorem 1 for the evaluations of the asymptotic
order of A(u) for some non Gaussian distribution, such as the generalized
Laplace distribution, the Pearson Type VII distribution and the Logistic distribu-
tion and so on. Some of these are presented by the following Examples 1-4. A
new result will be also given in Example 5 for the inverse Gauss distribution as
a mixing function of the SMN (scale mixture of normal). Example 6 will give a
conjecture for the case of the function f(x) with a generalized Gamma distribu-
tion as the mixing density function, which is an extension of the case for the
generalized Laplace distribution.

Example 1. Let the process X, have the standard normal density function :

1 i
= m=er 2.5)
T

Then the B (u) in (2.3) withg(a) = 6 (a— 1) (Dirac's delta function) is given by
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e
_ 2r Vo e -
POy e
2
= u’,
\/—p“)(O)

We should note that in this case it is easy to show the condition (2.2) holds.

Example 2. Let the process X, have the_generalized Laplace distribution with
parameters y > 1/4 and o >0 :

. L X
fx) = G—a‘r/n%;'(—y) (%)7 T BesselK(y — %, =) (2.6)

where BesselK( , ) is the modified Bessel function of the third kind (see
Johnson, Kotz and Balakrishnan [7], Tanaka and Shimizu [9]). The asymptotic
order function of A(u) of (1.2) when u — oo is evaluated by use of B(u) in (2.3)
such that

_ 27 —172 BesselK[y—1/2, u/0]
Bu)=+ 5y Vou BesselK[y—1, w/7] 2.7
~ ,/% Vou'? as u- .

For the mixing function g(a) of f(x) is the density of the Gamma distribution,

gla) = a’! P ) (2.8)

Gamma[y| (202)”

and then

y 2\
Hl-% (2_“_) y BesselK[y, u/o]

u

L e 27 gla)da = Gamma([y] K
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| . 2207 (0w BesselK[y—1, u/o]
fO €8 da = Gamma[y] :

The condition (2.2) holds. In this case we have the Laplace transform formulas
in (2.4) with

() = Qo) = +12) f—%’
\/ 21 Gammaly]

(P2 AP =
Gamma[)/]t e 2o

() =

Then the Abelian theorem of the Laplace transform (see Tanaka and Shimizu
[11]) shows that

g (1) U2

B0 T e S0
implies
o _ , 1/4 /
L etowdt oo™ | ww™

et dt V2r V2rx

Therefore we have B(u) ~ 4/ % Vou'? asu- .

Example 3. Let the process X, have the Pearson Type VII distribution :

—(v+1/2)

f(x) — 33;’ Gammalv+1/2] (AZ +X2)

Gammalv]

(2.9)

for v> 0, A > 0. Then the asymptotic order of A(u) when u — oo is given by

_ or Gamma [v+1/2]
Hu) = =90 N2 Gamma[v+1] (2.10)

(see Tanaka and Shimizu [9]). In this case the condition (2.2) also hold, since
the mixing function g(a) of f(x) is the density of the inverse Gamma distribu-
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tion,
_ AZVa—(V+1) _ A_l
8@ = 37 GammalT € @10
and then
[Pefigayda= A A2+,
o | _.;i _— 5 ) 2\~ 1=V Gammall+v]
f g€ g@da =24 (A +u?) T ZEmnool
Hence
27 (A% +u%)? Gamma[é +7]
B(u) = 2.12
“ m w? N 7 Gammal1+v] @1
L
27 Gammal[ 5 +v] as u = oo

-p2(0) V2 Gammall+V]

Thus the order is a constant, and the condition (2.2) always holds. In this case
the Laplace transform formulas in (2.4) are given by

Al

HI([) _ 2—§—V—A2V€— . ty—_é N 2—'?—1' A2V [_;_"'V
v Gammalv] Vr Gammalv]

b3

v A2y —AL Ly -V A2V
(92(’) — 2 A e 1 2 A

- %
Gammal[v] Gamma/[v] t as t = 0.

Since these functions &, (¢) and é,(¢) are regularly varying (see Bingham, Goldie
and Teugels [2]), the Abelian theorem for the Laplace transform of these func-
tions shows

f()mf_‘” gyt (s)'? Gammal % +v]
J(")""(,.—sr & (1) dt \/ﬁ Gammall+v]

2.\ 1/2
( "T) Gamma[% +v]

N Gammall+v]

asuy — co.
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(”amma[i +V]
2n ! 2
Therefore we have B(u) ~ 4/ 500 Cammaller] SU .

Example 4. Let the process X, have the Logistic distribution with the density

fx) = (l+e")2 . (2.13)
Then the asymptotic order of A(u) when u - oo is given by
2
Hw) =\ —5 5 f (2.14)
In this case the mixing function g(a) of f(x) is given by
gla) = Z 1 e 5a @>o). (2.15)
Then
[PLle % g@da = 2552, (-1 K BesselK[0, k ]
o V2 r PolyLog[-3.,—e7]
Vu
~ \/2__‘7_@‘1 as u— oo.
u
Hence
Bu) ~ 27 e (2.16)

[ 2r -1/2
~ mu / as U — oo.
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In this case the Laplace transform formulas in (2.4) are given by

Ly 42w —% 1'—% -1y g2y _ 1
9](,) - 2 A [4 I3 27z A .)+V

v Gammal|v] - \/;Gamma[vl ! ’

_ 2=V AZ\' e—% t =Y A: v v
6’2(1‘) Gamma([v] ~ Gamma|v] 4

as t - 0,

(see Tanaka and Shimizu [11]). Similar to the Example 3, since the functions
&, (1) and 6 (¢) are also regularly varying, we have

f e D) dt
~ — 2 u'?  as u - oo
v—p(2>(0) u [Tevrondt N =pP(0)

Example 5. Let the process X, have the SMN (scale mixture of normal)
distribution f (x) with the mixing density function, for a >0, g > 0andA > 0,

A ) femwt
TR (2.17)

gla) =

which is the inverse Gauss density function, then we have

oy =t . (2.18)

Then
Ny /T X
e TR
B(L{) — 2n 27r\/u +A
vV =p2(0) 26 VX L BesselK[LVid 4 y & |
“ Var Vit

11
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Hence the asymptotic order function of A (u) whenu — oo is given by

_ / 2r —1/2 y=1/4y . ~1/2

Example 6 (a conjecture). Let the process X, have the SMN (scale mixture of
normal) distribution f(x) with the mixing density function,

a-1
8@ = Gammala e ¢ WP >0 p>0y>0. 22D

(the density of the Generalized Gamma distribution, see Johnson, Kotz and
Balakrishnan [7], which is a Gamma distribution when y =1).

The mixing density of the Pearson Type VII distribution may be asymptoti-
cally equivalent to that of (2.15) when y — 0. The generalized Laplace, logistic
and the density function (2.13) in Example 5 also have the same kind mixing
function of (2.15) with y = 1. When y—oo, the mixing function of (2.15) will be
d(a-1) (Dirac's delta function) and then this is the mixing function of the stan-
dard normal distribution.

Therefore the results of Examples 1~5 above will lead to a following conjec-
ture:

If the mixing density function g(s) is a generalized Gamma distribution of
(2.10), the asymptotic order function H(u) of A(u) in (1.2) depends only on the
parameter vy, and it will be given by

Hu) = 0( u‘%). (2.22)

Examples 1-5 above will be special cases of the result (2.22):
when y = 0 ( from Example 2; Pearson Type VII),
H(u) = 0w™) = O(1);
when y =1 (from Examples 3-5; generalized Laplace, logistic),
H(u) = O(u™'?);
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when ¥ - co (from Example 1; Normal distribution),
H(u) = O™ ).

Unfortunately until now we can not prove the conjecture directly because the
Laplace transforms in (2.3) are not able to be evaluated expressively. Then in
the next section we shall illustrate the following three cases of y :

(1) fory=1/2, H(u)= 0w '?),
(2) fory=1, H(u)=O@w '?) (this is the only known case)
(3) fory=2, H@)=0w??).

3. Illustrations

(1) Let y = 1/2 in (2.21), then the ratios A(u) and B(u) in Theorem 1 may be
given by the following forms:

A(u) =

. 13 w
MeijerG|{{}.{}}.{{0, ,i},{}}, 12 , (2.23)

2
2 V7 MeijerGI{{}, 1}

v 2 MeijerG{().01.1(0,+.1),01, 4 |
uMeijerG{(1.0).1(0.0. T 1.0}, % ]

B(u) = , (2.24)

where MeijerG[ . ] is a Meijer's G function (see Gradshteyn and Ryzhik [5]).

Figure 1 and Figure 2 show that the asymptotic order functions of A(u) and
B(u) seem to be of same order as O( u~!/3), which agrees with the conjecture.

13
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5 10 15 20 25 30

Figure 1. Graphs of A(u), B(u) and z~'/3(upper line).

0.575 ¢

Figure 2. The graph of the ratio { B(u) / u~ '/},

which seems to tend to a constant as u — co.

(2) Let y=11in (2.21), then we have

AQu) = e V22 (2.25)

2 \/ExBesselK[l,\/—i x] ’

B(u) = e V2* (2.26)

2 V2 xBesselK[0,V2 x|
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It is easily seen that A(u) and B(u) are O(u !/?) asu - oo.

5 10 15 20 25 30

Figure 3. Graphs of A(u), B(u) and u~"?(upper line).
(3) Let y =2 in (2.21), then we have

Au) = 2{371+6\/_x2 HypergeometricPFQ[ i} {%, %’ %}’ _%]*

2 V2 x(6 Gamma[ 5 ] HypergeometricPFQ[{ L}, {1, 3, 3}, —1‘—46]
x*> Gammal[ 2 ]HypergeometrlcPFQ[ 2042, 2, 1) —% )}/
(3 22 MeijerG[{{}. {1}, {{—5.0. 0} (1} %), (2.27)

Buw) = V2 (2 Gamma[i] HypergeometricPFQ[{}w (3, 7h- )1(_;] -

where HypergeometricPFQ[ . ] is the generalized hypergeometric function ,, F),
(see Gradshteyn and Ryzhik [5]).
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Figure 4 bellow shows that the asymptotic order functions of A(u) and B(u)
seem to be of same order as O( u=2/3), which also agrees with the conjecture.

1 2 3 4 5 6

Figure 4. Graphs of A(u), B(u) and u~%3(lowest line).

Appendix
Proof of Lemma A
p'(x) _ p'(x)
(r(x) g(x))' r'(x) g (x)+r(x)gq'(x)
_ p' )
rx)q ' () [ R 41

-1

_ p'(x) []_I_r'(x)Q(x)]
r(x)q '(x) r(x) q'(x)

Therefore if the conditions (i) and (ii) hold,
applying the L' Hopital' s rule, we have

X "(x
Limiteos — P2 piir P

r(x) g(x) (r(x) g (x))'
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-1

p'(x) []+r'(x)51(x)] }

= Limit, L {

r(x)q ' (x) r(x)q'(x)
1 1 -1
= Limity oo {—2-% Y Limit, ., {[1 + =229 1)
r(x)q ' (x) r(x)q '(x)
B 1+C 3
Hence we have a constant C, = C—I > (0 such that
1+C 3
E_(ﬁ ~Corr(x) as x— oo.
q(x)

Furthermore if C; = 0, wehave C, = C;, and the converse also holds.

Proof of Corollary A

Suppose r(x) = x%, then rr((;c)) = a x~!. Hence the condition (ii) in Lemma

A with C3 =0 is given by

Thus Corollary A is obtained. O

We shall next consider some special cases of the function q(x) in Corollary
A.

(1) Suppose q(x) = # e (Normal distribution).

Let p(x) = 1 = ®(x) = [~ q(t) d1, then it is well-known that

On the other hand, p'(x) = —¢g(x) and g '(x) = (—x) g(x). Thus

17
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1
X _
P ) - as x - oo.

q'(x)
Hence % ~ Z.—Eg (as x—oo) as x—oo. In this case the condition (ii)

holds, since

q(yx) = —x? 50asx> .
xq'(x)

(2) Suppose q(x) = e+ and px) = x~%e~. Then we have

q'(x) = (=x"?)q(x),

q('x) = —x o —OO:C3 as x — o0,
xq'(x)

Hence the condition (ii) does not hold. In fact P p . (x) (as x—>o0)
qx)  q'(x)

does not hold, since g((%) x % and

H

PI® _ (X g @x+) | .
O T xhaw Y wEoe

(3) Suppose q(x) =x7¢ (a>0)and p(x) =x"*q(x) (@ >0).Then we have

q'x) =(-a)x ! = (~a)x 1q(x)

qx)  _ 1 _
xg W - oy -G FY
p'w _ (caxHg+x (-a)x7 qlx) _ (@ta@)x o
2 .

q'(x) (—ax~1) g(x)

Hence P p . (x) (as x—oo) does not hold.
qx)  gq'(%)
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(4) Suppose q(x) =e"™ (h(x) >0, h'(x) >0) and p(x) =x"%q(x) (@>0).
Then we have q'(x) =(-A'(x))q(x), and

q (x) 1

xq'(x) — (=x)h'(x)°

Thus the condition (ii) holds iff Limit,.. [x h'(x)] #0,

and also we have

rx  p'x)
q(x) q'(x)

(as x—oo0) iff Limit,_., [X h'(X)] = oo.

Specially if 4(x) = x* (a > 0), the condition (i) holds, but if A(x) = Log(x),

the condition (ii) does not holds.
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